DOI QR코드

DOI QR Code

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi (Department of Civil Engineering, Faculty of Engineering, Universitas Indonesia) ;
  • Nadhifah K. Kirana (Department of Civil Engineering, Faculty of Engineering, Universitas Indonesia) ;
  • Jessica Sjah (Department of Civil Engineering, Faculty of Engineering, Universitas Indonesia) ;
  • Nuraziz Handika (Department of Civil Engineering, Faculty of Engineering, Universitas Indonesia) ;
  • Eric Vincens (Univ Lyon, Ecole Centrale de Lyon)
  • Received : 2023.11.19
  • Accepted : 2024.03.13
  • Published : 2024.03.25

Abstract

This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.

Keywords

Acknowledgement

The research is funded by Directorate of Research and Development, Universitas Indonesia under Hibah PUTI Pascasarjana 2023 (Grant No. NKB-254/UN2.RST/HKP.05.00/2023).

References

  1. ACI Committee Report 228 (2003), In-Place Methods to Estimate Concrete Strength, American Concrete Institute, Farmington Hills, MI, USA.
  2. Amini, K., Jalalpour, M. and Delatte, N. (2016), "Advancing concrete strength prediction using non-destructive testing: Development and verification of a generalizable model", Constr. Build. Mater., 102(1). 762-768. https://doi.org/10.1016/j.conbuildmat.2015.10.131.
  3. ASTM C 39 (2021), Standard Method of Test for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA, USA.
  4. ASTM C 597 (2022), Standard Test Method for Pulse Velocity through Concrete. ASTM International, West Conshohocken, PA, USA.
  5. ASTM C 805 (2018), Standard Test Method for Rebound Number of Hardened Concrete. ASTM International; West Conshohocken, PA, USA.
  6. Benaicha, M., Jalbaud, O., Roguiez, X., Alaoui, A.H. and Burtschell, Y. (2015), "Prediction of self-compacting concrete homogeneity by ultrasonic velocity", Alexandra Eng. J., 54(4), 1181-1191 https://doi.org/10.1016/j.aej.2015.08.002.
  7. Breysse, D. (2012), Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques. Springer, New York, USA.
  8. Brozovsky, J. (2009), "Evaluation of calculation correlation efficiency as mentioned in EN 13791 in order to determine concrete compression strength by nondestructive testing", Proceedings of the 10th International Conference of the Slovenian Society for Non-Destructive Testing: Application of Contemporary Non-Destructive Testing in Engineering, Ljubljana, Slovenia.
  9. Chin, W.W. (1998), The Partial Least Squares Aproach to Structural Equation Modeling. Lawrence Erlbaum Associates, Mahwah, New Jersey, USA.
  10. Craeye, B., van de Laar, H., van der Eijk, J., Gijbels, W. and Lauriks, L. (2017), "On-site strength assessment of limestone based concrete slabs by combining non-destructive techniques", J. Build. Eng., 13, 216-223. https://doi.org/10.1016/j.jobe.2017.08.006.
  11. Erdal, H., Erdal, M., Simsek, O. and Erdal, H.I. (2018), "Prediction of concrete compressive strength using non-destructive test results", Comput. Concrete, 21(4), 407-417. https://doi.org/10.12989/cac.2018.21.4.407.
  12. Gavela, S., Karydis, G., Papadakos, G., Zois, G. and Sotiropoulou, A. (2023), "Uncertainty of concrete compressive strength determination by a combination of rebound number, UPV, and uniaxial compressive strength tests on cubical concrete samples", Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.04.510.
  13. Gilson (2020), Type N Schmidt Test Hammers; Gilson Company, Inc, USA, www.globalgilson.com
  14. Gucluer, K. (2020), "Investigation of the effects of aggregate textural properties on compressive strength (CS) and ultrasonic pulse velocity (UPV) of concrete", J. Build. Eng., 27, 100949. https://doi.org/10.1016/j.jobe.2019.100949.
  15. Handika, N., Norita, B.F., Tjahjono, E. and Arijoeni, E. (2020), "Experimental studies on the homogeneity and compressive strength prediction of recycled aggregate concrete (RAC) using ultrasonic pulse velocity (UPV)", CSID J. Infrastruct. Development, 3(2), 117-128. https://doi.org/10.32783/csid-jid.v3i2.111.
  16. Hannachi, S. and Guetteche, M.N. (2012), "Application of the combined method for evaluating the compressive strength of concrete on site", Open J. Civil Eng., 2(1), 16-21. https://doi.org/10.4236/ojce.2012.21003.
  17. Hossain, Z. and Islam, K.T. (2021), Prospects of Rice Husk Ash as a Construction Material, In R. Siddique, & R. Belarbi, Sustainable Concrete Made with Ashes and Dust from Different Sources: Materials, Properties and Applications. Woodhead Publishing, Cambridge, UK.
  18. Jain, A., Kathuria, A., Kumar, A., Verma, Y. and Murari, K. (2013), "Combined use of non-destructive tests for assessment of strength of concrete in structure", Procedia Eng., 54, 241-251. https://doi.org/10.1016/j.proeng.2013.03.022.
  19. Jamal, M., Widiastuti, M. and Anugrah, A.T. (2017), "Pengaruh penggunaan sikacim concrete additive terhadap kuat tekan beton dengan menggunakan agregat kasar bengalon dan agregat halus pasir Mahakam", Prosiding Seminar Nasional Teknologi IV, Samarinda, Indonesia.
  20. Khayat, K.H., Vanhove, Y., Pave, T.V. and Jolicoeur, C. (2007), "Multi-electrode conductivity method to evaluate static stability of flowable and self-consolidating concrete", ACI Mater. J., 104(4), 424-433. https://doi.org/10.14359/18833.
  21. Kong, F., Xue, Y., Qiu, D., Gong, H. and Ning, Z. (2021), "Effect of grain size or anisotropy on the correlation between uniaxial compressive strength and Schmidt hammer test for building stones", Constr. Build. Mater., 299, 12394. https://doi.org/10.1016/j.conbuildmat.2021.123941
  22. Kumavat, H.R., Chandak, N.R. and Patil, I.T. (2021), "Factors influencing the performance of rebound hammer used for non-destructive testing of concrete members: A review", Case Studies Constr. Mater., 14, https://doi.org/10.1016/j.cscm.2021.e00491.
  23. Malhotra, V.M. and Carino, N.J. (2004), Handbook on Nondestructive Testing on Concrete. CRC Press, New York, USA.
  24. Mehta, P.K. and Monteiro, P.J. (2013), Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education, New York, USA.
  25. Mulyono, T. (2004), Teknologi Beton: Dari Teori ke Praktek. LPP Press, Yogyakarta, Indonesia.
  26. Norman, R., Dedi, P. and Rizky, D. (2016), "Studi angka koefisien korelasi kuat tekan beton mutu tinggi berdasarkan umur & bentuk benda uji standar SNI 03-2847-2002", Agregat, 1(2), 44-50. https://doi.org/10.30651/ag.v1i2.338.
  27. Novrianti, Respati, R. and Muda, A. (2014), "Pengaruh admixture sikacim terhadap campuran beton k350 ditinjau dari kuat tekan beton", Media Ilmiah Teknik Sipil, 2, 64-69.
  28. Panzera, T., Christoforo, A., Cota, F., Borges, P. and Bowen, C. (2011), "Ultrasonic pulse velocity evolution of cementous materials", Advances in Composite Materials - Analysis of Natural and Man-Made Materials, IntechOpen, London, UK.
  29. Poorarbabi, A., Ghasemi, M. and Moghaddam, M.A. (2020), "Concrete compressive strength prediction using non-destructive tests through response surface methodology", Ain Shams Eng. J., 11(4), 939-949 https://doi.org/10.1016/j.asej.2020.02.009.
  30. Proceq (2017), Operating Instructions: Silver Schmidt and HammerLink. Proceq, Schwerzenbach, Switzerland.
  31. SNI 2847 (2019), Persyaratan Beton Struktural untuk Bangunan Gedung. Badan Standardisasi Nasional; Jakarta, Indonesia.
  32. SNI 7656 (2012), Tata cara pemilihan campuran untuk beton normal, beton berat, dan beton massa. Badan Standardisasi Nasional; Jakarta, Indonesia.
  33. Sofyani, D., Handika, N., Tjahjono, E. and Arijoeni, E. (2019), "Flexural behavior of reinforced lightweight concrete beam using hot water pre-treated oil palm shell coarse aggregate", MATEC Web of Conferences, 276, 01032. https://doi.org/10.1051/matecconf/201927601032.
  34. Tahwia, A.M., Heniegal, A., Elgamal, M.S. and Tayeh, B.A. (2021), "The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, 27, 21-28. https://doi.org/10.12989/cac.2021.27.1.021.
  35. Turgut, P. and Kucuk, O. (2006), "Comparative relationships of direct, indirect, and semi-direct ultra pulse velocity measurements in concrete", Russian J. Nondestruct. Test., 42, 745-751. https://doi.org/10.1134/S1061830906110064.