DOI QR코드

DOI QR Code

Physicochemical and textural properties of thawed pork by vacuum tumbling

진공 텀블링을 이용한 해동 돈육의 이화학적 및 조직학적 특성

  • Su-Jin Park (Department of Food Science and Technology, Sunchon National University) ;
  • Won-Ho Hong (Department of Food Science and Technology, Sunchon National University) ;
  • Seung-Min Oh (Department of Food Science and Technology, Sunchon National University) ;
  • Chang-Hee Cho (Department of Mechanical Engineering, Gyeonggi University of Science and Technology) ;
  • Jiyeon Chun (Department of Food Science and Technology, Sunchon National University)
  • 박수진 (국립순천대학교 식품공학과) ;
  • 홍원호 (국립순천대학교 식품공학과) ;
  • 오승민 (국립순천대학교 식품공학과) ;
  • 조창희 (경기과학기술대학교 기계공학과) ;
  • 천지연 (국립순천대학교 식품공학과)
  • Received : 2024.03.04
  • Accepted : 2024.05.27
  • Published : 2024.06.30

Abstract

In this study, a vacuum tumbler with 4 impellers (DVT) was designed and applied for thawing frozen pork (vacuum -60 kPa, jacket 35℃, 1 rpm). Quality characteristics of the thawed pork were compared with those of industrially thawed meat by natural air at room temperature (NAT) and imported vacuum tumbler (IVT). The thawing time for frozen pork (303.36 kg) using DVT (165 min) was much shorter than that of NAT (4,200 min). DVT-thawed pork had lower drip loss (0.85%) than NAT (2.08%). DVT-thawed pork showed a pH of 5.92, a total bacterial count of 1.96±0.02 log CFU/g and no coliforms. Deteriorations in fat (TBARS 0.31±0.01 MDA mg/kg) and protein (VBN 5.67±1.98 mg%) in DVT-thawed pork were significantly lower than those of NAT (p<0.05). DVT-thawed pork had a high water-holding capacity (WHC, 97.5%). The hardness (34.59±0.46 N) and chewiness (188.21±0.17) of cooked DVT-thawed pork were about 5-6 times lower than those of NTA. Microstructure (SEM) showed myofibrillar damage in NAT-thawed pork, whereas dense myofibrillar structure was observed in DVT-thawed pork. DVT was better or similar to IVT in all evaluation parameters. The designed DVT is expected to be used as an efficient thawing method in terms of processing time and yield and to produce thawed meat with high WHC, soft texture, and low spoilage by minimizing tissue damage.

본 연구에서는 육가공 산업의 필수 공정인 냉동육 해동 시 발생하는 식육의 품질 저하를 최소화하기 위하여 진공 텀블링 해동 방식을 적용하고자 산업용 국산 임펠러-진공 텀블러(DVT, 6 ton)를 고안하고 이를 이용하여 해동한 냉동 돈육의 품질 특성을 현재 상업적으로 이용하는 자연해동(NTA)과 수입산 진공 텀블링 해동(IVT) 특성과 비교 분석하였다. 냉동 돈육(앞다리)의 자연해동 시간은 4,200분인데 반하여 DVT 해동은 165분이 소요되어 냉동 돈육 해동시간이 약 25배 단축되었다. 해동 시 돈육의 드립감량은 자연해동 2.08%에 비하여 DVT 해동은 0.85%로 낮아져 높은 해동 수율(99.2%)을 얻을 수 있었다. 자연 해동육에서 대장균군이 0.10±0.17 log CFU/g 수준으로 검출된데 반하여 DVT 해동육의 pH는 5.92, 총균수 1.96±0.01 log CFU/g, 대장균군 불검출로 높은 신선도를 보였다. 또한, DVT 해동육의 지방산패도(TBARS) 0.31±0.01 MDA mg/kg와 단백질변패도(VBN) 5.67±1.98 mg%를 보여 자연해동 돈육(각각 0.42±0.01 MDA mg/kg와 6.86±0.00 mg%)에 비해 지방과 단백질 변패도를 유의적으로 낮출 수 있는 것으로 나타났다. DVT 해동육의 보수력은 97.50±0.90%로 자연해동육(95.24±0.03%)에 비해 유의적으로 높았다. 자연해동(NTA) 후 조리한 돈육은 경도 212.03±0.02 N과 씹힘성 885.36±0.80이 진공 텀블링(DVT, IVT) 해동육에 비하여 각각 6.1배와 4.7배 높게 나타나 진공 텀블링 해동이 부드러운 조직감을 갖는 식육을 생산할 수 있는 것으로 나타났다. 해동육과 이를 가열조리한 돈육의 미세구조(SEM)를 관찰한 결과, 진공 텀블링 해동(DVT, IVT) 시료에서 근원섬유의 손상이 적어 섬유배열과 간격이 촘촘한 구조를 나타냈다. 본 연구에서 국내 최초로 고안한 산업용 대용량 진공텀블러는 해동 시 근육 조직의 손상을 최소화하여 보수력을 높이고, 드립감량을 감소시켜 부드러운 조직감과 함께 생산 수율을 높일 수 있을 뿐만 아니라 미생물학적 및 이화학적 변패도를 최소화할 수 있어 고품질의 육제품 생산에 활용될 수 있을 것으로 보인다. 또한, 본 장치는 수입산 진공텀블러와 비교해 우수한 품질의 해동육을 생산할 수 있어 본 연구자료를 이용한 국산 기술 자립화, 제품 품질 개선 및 수율 향상 등 육가공 산업 발전에 기여할 수 있을 것이라 사료된다.

Keywords

Acknowledgement

We are grateful to Hyupjin Co., Ltd for providing frozen-pork for this research works.

References

  1. Akamittath JG, Brekke CJ, Schanus EG. Lipid oxidation and color stability in restructured meat systems during frozen storage. J Food Sci, 55, 1513-1517 (1990)
  2. Choi EJ, Park HW, Chung YB, Kim JS, Park SH, Chun HH. Effect of supercooling on the storage stability of rapidly frozen-thawed pork loins. Korean J Food Preserv, 24, 168-180 (2017)
  3. Chun HH, Choi EJ, Han AR, Chung YB, Kim JS, Park SH. Changes in quality of Hanwoo bottom round under different freezing and thawing conditions. J Korean Soc Food Sci Nutr, 45, 230-238 (2016)
  4. Corekci B, Toy E, Ozturk F, Malkoc S, Ozturk B. Effects of contemporary orthodontic composites on tooth color following short-term fixed orthodontic treatment: A controlled clinical study. Turk J Med Sci, 45, 1421-1428 (2015)
  5. Farouk MM, Wieliczko KJ, Merts I. Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci, 66, 171-179 (2004)
  6. Food Information Statistics System. 2020 Processed Food Segmentation Market Status Processed Meat Products. Korea Agro-Fisheries & Food Trade Corporation, Naju, Korea, p 1-227 (2020)
  7. Gan S, Zhang M, Mujumdar AS, Jiang Q. Effects of different thawing methods on quality of unfrozen meats. Int J Refrig, 134, 168-175 (2022)
  8. Hamm R. Post-mortem changes in muscle with regard to processing of hot-boned beef. Acta Alimentaria Polonica, 8, 235-254 (1982)
  9. Han DB. Agricultural Outlook 2024 Korea. Korea Rural Economic Institute, Naju, Korea, p 17-18, 757-758 (2024)
  10. Hansen E, Trinderup RA, Hviid M, Darre M, Skibsted LH. Thaw drip loss and protein characterization of drip from air-frozen, cryogen-frozen, and pressure-shift-frozen pork longissimus dorsi in relation to ice crystal size. Eur Food Res Technol, 218, 2-6 (2003)
  11. Heo C, Kim HW, Choi YS, Kim CJ, Paik HD. Application of predictive microbiology for shelf-life estimation of Tteokgalbi containing dietary fiber from rice bran. Food Sci Anim Resour, 28, 232-239 (2008)
  12. Hong WH, Kim J, Gwak YJ, Chun J. Influence of low-pressure tumbling on the quality characteristics of thawed pork. Korean J Food Preserv, 30, 88-97 (2023)
  13. Hu R, Zhang M, Jiang Q, Law CL. A novel infrared and microwave alternate thawing method for frozen pork: Effect on thawing rate and products quality. Meat Sci, 198, 109084 (2023)
  14. James MJ. Mechanical and detection of microbial spoilage in meat at low temperature. J Milk Food Technol, 35, 467-471 (1972)
  15. Jo C, Ahn DU. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey. Poult Sci, 77, 475-480 (1998)
  16. Kang SM, Kang CG, Lee SK. Comparison of quality characteristics of Korean native black pork and modern genotype pork during refrigerated storage after thawing. Korean J Food Sci Ani Resour, 27, 1-7 (2007)
  17. Kim GS, Choi SH. Changes in residual nitrite, TBARS and color of meat products during storage. Korean J Food Sci Ani Resour, 27, 299-307 (2007)
  18. Kim J, Park SH, Choi DS, Choi SR, Kim YH, Lee SJ, Park CW, Han GJ, Park JW. Effects of ultrasonic thawing on the physicochemical properties of frozen pork. Korean J Food Preserv, 24, 230-236 (2017)
  19. Kim SK, Lee MS, Lee KT, Park SK, Song KB. Changes in quality of pork and beef during storage and electronic nose analysis. Korean J Food Preserv, 11, 441-447 (2004)
  20. Kim SM, Cho YS, Sung SK, Lee IG, Lee SH, Kim DG. Developments of functional sausage, using plant extracts from pine needle and green tea. Korean J Food Sci Ani Resour, 22, 20-29. (2002)
  21. Kim YB, Woo SM, Jeong JY, Ku SK, Jeong JW, Kum JS, Kim EM. Temperature changes during freezing and effect of physicochemical properties after thawing on meat by air blast and magnetic resonance quick freezing. Korean J Food Sci An, 33, 763-771 (2013)
  22. Ko M, Yang JB. Effects of wrap and vacuum packaging on shelf life of chilled pork. Korean J Food & Nutr, 14, 255-262 (2001)
  23. Kondratowicz J, Chwastowska I, Matusevicius P. Sensory quality of pork and total microbial count depending on deep-freeze storage time and thawing method. Veterinarija ir Zootechnika, 33, 43-46 (2006)
  24. Lee JK, Park JY. Rapid thawing of frozen pork by 915 MHz microwave. Korean J Food Sci Technol, 31, 54-61 (1999)
  25. Miller AJ, Ackerma SA, Paulumbo SA. Effects of frozen storage on functionality of meat for processing. J Food Sci, 45, 1466-1471 (1980)
  26. Ministry of Food and Drug Safety. Food Code. Available from: https://various.foodsafetykorea.go.kr/fsd/#/ext/Document/FC. Accessed Apr. 28, 2023.
  27. Nam DG, Jeong BG, Chun J. Physicochemical properties and oxidative stabilities of chicken breast jerky treated various sweetening agents. Korean J Food Preserv, 24, 84-92 (2017)
  28. Ozuna C, Puig A, Garcia-Perez J, Mulet A, Carcel JA. Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. J Food Eng, 119, 84-93 (2013)
  29. Park CJ, Kim ML, Park CS. Effects of drying method and medicinal herb extract addition on the microstructure of beef jerky. Korean J Food Preserv, 16, 875-883 (2009)
  30. Park MH, Kwon JE, Kim SR, Won JH, Ji JY, Hwang IK, Kim MR. Physicochemical and microbiological properties of pork by various thawing methods. J East Asian Soc Dietary Life, 22, 298-304 (2012)
  31. Wang B, Kong B, Li F, Liu Q, Zhang H, Xia X. Changes in the thermal stability and structure of protein from porcine longissimus dorsi induced by different thawing methods. Food Chem, 316, 126375 (2020)
  32. Xie X, Li J. Modeling, analysis and continuous improvement of food production systems: A case study at a meat shaving and packaging line. J Food Eng, 113, 344-350 (2012)