References
- Akl, W., Ruzzene, M. and Baz, A. (2002), "Optimal design of underwater stiffened shells", Struct. Multidiscipl. Optimiz., 23, 297-310 https://doi.org/10.1007/s00158-002-0187-1
- Ambur, D.R. and Jaunky, N. (2001), "Optimal design of grid-stiffened panels and shells with variable curvature", Compos. Struct., 52(2), 173-180. https://doi.org/10.1016/S0263-8223(00)00165-3.
- Aydogdu, M. (2005), "Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method", Int. J. Mech. Sci., 47(11), 1740-1755. https://doi.org/10.1016/j.ijmecsci.2005.06.010.
- Bagheri, M., Jafari, A. and Sadeghifar, M. (2011), "Multi-objective optimization of ring stiffened cylindrical shells using a genetic algorithm", J. Sound Vib., 330(3), 374-384. https://doi.org/10.1016/j.jsv.2010.08.019.
- Belardi, V.G., Fanelli, P. and Vivio, F. (2018), "Structural analysis and optimization of anisogrid composite lattice cylindrical shells", Compos. Part B: Eng., 139, 203-215. https://doi.org/10.1016/j.compositesb.2017.11.058.
- Buragohain, M. and Velmurugan, R. (2009), "Buckling analysis of composite hexagonal lattice cylindrical shell using smeared stiffener model", Defence Sci. J., 59(3), 230
- Buragohain, M. and Velmurugan, R. (2011), "Study of filament wound grid-stiffened composite cylindrical structures", Compos. Struct., 93(2), 1031-1038. https://doi.org/10.1016/j.compstruct.2010.06.003.
- Cancer Patient Receives 3D Printed Ribs in World-First Surgery (2015), https://blog.csiro.au/cancer-patient-receives-3d-printed-ribs-in-world-first-surgery/
- Chapra, S.C. and Canale, R.P. (2010), Numerical Methods for Engineers, The Mcgraw-Hill Companies
- Cheung, Y. and Zhou, D. (2000), "Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions", Comput. Struct., 78(6), 757-768. https://doi.org/10.1016/S0045-7949(00)00058-4.
- Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Transact. Evolution. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.
- Dong, G., Tang, Y., Li, D. and Zhao, Y.F. (2020), "Design and optimization of solid lattice hybrid structures fabricated by additive manufacturing", Additive Manufact., 33, 101116. https://doi.org/10.1016/j.addma.2020.101116.
- Eftekhari, S. and Jafari, A. (2013), "A simple and accurate Ritz formulation for free vibration of thick rectangular and skew plates with general boundary conditions", Acta Mechanica. 224(1), 193-209. https://doi.org/10.1007/s00707-012-0737-6.
- Ehsani, A. and Dalir, H. (2019), " Multi-objective optimization of composite angle grid plates for maximum buckling load and minimum weight using genetic algorithms and neural networks", Compos. Struct., 229, 111450. https://doi.org/10.1016/j.compstruct.2019.111450.
- Ehsani, A. and Dalir, H. (2021), " Multi-objective design optimization of variable ribs composite grid plates", Struct. Multidiscipl. Optimiz., 63(1), 407-418. https://doi.org/10.1007/s00158-020-02672-7.
- Ehsani, A. and Rezaeepazhand, J. (2016), "Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm", Int. J. Mech. Sci., 119, 97-106. https://doi.org/10.1016/j.ijmecsci.2016.09.028.
- Eschknauer, H. (1995), "Vasiliev, VV: Mechanics of Composite Structures. Washington etc., Taylor & Francis Ltd. 1993. XI, 506 pp.,£ 35.00. IS N 1-56032-034-6", Zeitschrift Angewandte Mathematik und Mechanik. 75(3), 206-206. https://doi.org/10.1002/zamm.19950750305.
- Fan, H., Jin, F. and Fang, D. (2009), "Uniaxial local buckling strength of periodic lattice composites", Mater. Des., 30(10), 4136-4145. https://doi.org/10.1016/j.matdes.2009.04.034.
- Farkas, J. and Jarmai, K. (2000), "Optimum design of welded stiffened plates loaded by hydrostatic normal pressure", Struct. Multidiscipl. Optimiz., 20, 311-316. https://doi.org/10.1007/s001580050161.
- Fright, M.S. (1973), Isogrid Design Handbook, NASA
- Ghadi, N., Mattikalli, A. and Ghadi, A. (2017), "Design and Fe analysis of composite grid structure for skin stiffening applications", Int. Res. J. Eng. Technol., 4(08),
- Ghannadpour, S. and Barekati, M. (2016), "Initial imperfection effects on postbuckling response of laminated plates under end-shortening strain using Chebyshev techniques", Thin-Wall. Struct., 106, 484-494 https://doi.org/10.1016/j.tws.2016.03.028
- Ghannadpour, S. and Rashidi, F. (2022), " Efficient and accurate semi-analytical simulation of nonlinear behavior of imperfect variable stiffness plates containing rectangular holes", ThinWall. Struct., 171, 108830. https://doi.org/10.1016/j.tws.2021.108830.
- Ghannadpour, S.A.M. and Rashidi, F. (2021), "A semi-analytical study on effects of geometric imperfection and curved fiber paths on nonlinear response of compression-loaded laminates", Steel Compos. Struct., 40(4), 621-632. https://doi.org/10.12989/scs.2021.40.4.621.
- Inc., T.M. (2023), gamultiobj, The athWorks Inc. https://www.mathworks.com/help/gads/gamultiobj.html.
- Jaunky, N., Knight Jr, N.F. and Ambur, D.R. (1996), "Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels", Compos. Part B: Eng., 27(5), 519-526. https://doi.org/10.1016/1359-8368(96)00032-7.
- Jing, Z. (2023), "Variable stiffness discrete Ritz method for free vibration analysis of plates in arbitrary geometries", J. Sound Vib., 553, 117662. https://doi.org/10.1016/j.jsv.2023.117662.
- Jing, Z. and Duan, L. (2023), "Discrete Ritz method for buckling analysis of arbitrarily shaped plates with arbitrary cutouts", Thin-Wall. Struct., 193, 111294. https://doi.org/10.1016/j.tws.2023.111294.
- Kalyanmoy, D. (2001), Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & sons, Inc
- Kidane, S., Li, G., Helms, J., Pang, S.-S. and Woldesenbet, E. (2003), "Buckling load analysis of grid stiffened composite cylinders", Compos. Part B: Eng., 34(1), 1-9. https://doi.org/10.1016/S1359-8368(02)00074-4.
- Kim, P. and Park, J. (2023), "An approximate method for Buckling analysis and optimization of composite lattice conical panels considering geometric parameters", Int. J. Aeronautic. Space Sci., 1-13. https://doi.org/10.1007/s42405-023-00589-1.
- Kim, Y. and Park, J. (2021), "An approximate method for the progressive failure analysis of a composite lattice rectangular plate", Mech. Adv. Mater. Struct., 28(19), 1992-2008. https://doi.org/10.1080/15376494.2020.1716413.
- Kim, Y., Kim, P.,Kim, H. and Park, J. (2017), "An approximate method for the buckling analysis of a composite lattice rectangular plate", Int. J. Aeronautic. Space Sci., 18(3), 450-466. http://dx.doi.org/10.5139/IJASS.2017.18.3.450.
- Kim, Y., Kim, P., Kim, H. and Park, J. (2018), "Optimal design of a composite lattice rectangular plate for solar panels of a high-agility satellite", Int. J. Aeronautic. Space Sci., 19, 762-775. https://doi.org/10.1007/s42405-018-0050-2.
- Knighton, D.J. (1972), "Delta launch vehicle isogrid structure NASTRAN analysis", NASTRAN: Users' Experiences.
- Lee, Y., Zhao, X. and Reddy, J. (2010), "Postbuckling analysis of functionally graded plates subject to compressive and thermal loads", Comput. Meth. Appl. Mech. Eng., 199(25-28), 1645-1653. https://doi.org/10.1016/j.cma.2010.01.008.
- Liew, K., Wang, J., Tan, M. and Rajendran, S. (2006), "Postbuckling analysis of laminated composite plates using the mesh-free kp-Ritz method", Comput. Meth. Appl. Mech. Eng., 195(7-8), 551-570. https://doi.org/10.1016/j.cma.2005.02.004.
- Lopatin, A., Morozov, E. and Shatov, A. (2016), "Buckling of uniaxially compressed composite anisogrid lattice plate with clamped edges", Compos. Struct., 157, 187-196. https://doi.org/10.1016/j.compstruct.2016.08.034.
- Lopatin, A., Morozov, E. and Shatov, A. (2017), "Buckling of the composite anisogrid lattice plate with clamped edges under shear load", Compos. Struct., 159, 72-80. https://doi.org/10.1016/j.compstruct.2016.09.025.
- Lopatin, A., Morozov, E. and Shatov, A. (2017), "Buckling of uniaxially compressed composite anisogrid lattice cylindrical panel with clamped edges", Compos. Struct., 160, 765-772. https://doi.org/10.1016/j.compstruct.2016.10.055.
- Lopatin, A., Morozov, E. and Shatov, A. (2018), "Fundamental frequency of a composite anisogrid lattice cylindrical panel with clamped edges", Compos. Struct., 201, 200-207. https://doi.org/10.1016/j.compstruct.2018.06.006.
- Lopatin, A., Morozov, E. and Shatov, A. (2019), "Buckling and vibration of composite lattice elliptical cylindrical shells", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 233(7), 1255-1266. https://doi.org/10.1177/1464420717736549
- Milazzo, A. and Oliveri, V. (2021), "Investigation of buckling characteristics of cracked variable stiffness composite plates by an eXtended Ritz approach", Thin-Wall. Struct., 163, 107750. https://doi.org/10.1016/j.tws.2021.107750.
- Mindlin, R. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", https://doi.org/10.1115/1.4010217.
- Morozov, E. and Lopatin, A. (2009). "Innovative design of the composite lattice frame of a spacecraft solar array", Proceedings of the 17th international conference on composite materials (ICCM-17), Edinburgh, Scotland.
- Murthy, V. and Santhanakrishnanan, S. (2020), "Isogrid lattice structure for armouring applications", Procedia Manufacturing. 48, e1-e11. https://doi.org/10.1016/j.promfg.2020.05.099.
- Ossola, E., Borgonia, J.P., Hendry, M., Sunada, E., Brusa, E. and Sesana, R. (2021), "Design of isogrid shells for venus surface probes", J. Spacecraft Rockets. 58(3), 643-652. https://doi.org/10.2514/1.A34823.
- Paschero, M. and Hyer, M.W. (2009), "Axial buckling of an orthotropic circular cylinder: Application to orthogrid concept", Int. J. Solids Struct., 46(10), 2151-2171. https://doi.org/10.1016/j.ijsolstr.2008.08.033.
- Pavlov, L., te Kloeze, I., Smeets, B. and Simonian, S. (2016), "Development of mass and cost efficient grid-stiffened and lattice structures for space applications", Proceedings of the 14th European Conference on Spacecraft Structures, Materials and Environmental Testing (ECSSMET), Toulouse, France.
- Pavlov, L., te Kloeze, I., Smeets, B.J. and Simonian, S. (2016). "Development of mass and cost efficient grid-stiffened and lattice structures for space applications", Proceedings of the 14th European Conference on Spacecraft Structures, Materials and Environmental Testing (ECSSMET), Toulouse, France.
- Rashidi, F., Ghannadpour, S. and Farrokhabadi, A. (2024), "Exploring the nonlinear response of cracked variable stiffness composite plates using plate decomposition method", Compos. Struct., 118095. https://doi.org/10.1016/j.compstruct.2024.118095.
- Reddy, A. (1981). "Damage tolerance of continuous filament composite isogrid structures: a preliminary assessment", Japan-US Conference Proceddings.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", https://doi.org/10.1115/1.4009435.
- Saadatpour, M.M., Azhari, M. and Bradford, M. (2002), "Analysis of general quadrilateral orthotropic thick plates with arbitrary boundary conditions by the Rayleigh-Ritz method", Int. J. Numer. Methods Eng., 54(7), 1087-1102. https://doi.org/10.1002/nme.485.
- Sensmeier, M.D. (1996), Optimum Crashworthiness Design of Grid-Stiffened Composite Fuselage Structures, Virginia Polytechnic Institute and State University
- Slinchenko, D. and Verijenko, V. (2001), "Structural analysis of composite lattice shells of revolution on the basis of smearing stiffness", Compos. Struct., 54(2-3), 341-348. https://doi.org/10.1016/S0263-8223(01)00108-8.
- Totaro, G. (2012), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells", Compos. Struct., 94(2), 446-452. https://doi.org/10.1016/j.compstruct.2011.08.002.
- Totaro, G. (2013), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells", Compos. Struct., 95, 403-410. https://doi.org/10.1016/j.compstruct.2012.07.011.
- Totaro, G. (2015), "Optimal design concepts for flat isogrid and anisogrid lattice panels longitudinally compressed", Compos. Struct., 129, 101-110. https://doi.org/10.1016/j.compstruct.2015.03.067.
- Totaro, G. and Gurdal, Z. (2009), "Optimal design of composite lattice shell structures for aerospace applications", Aerosp. Sci. Technol., 13(4-5), 157-164. https://doi.org/10.1016/j.ast.2008.09.001.
- Vasiliev, V. and Razin, A. (2006), "Anisogrid composite lattice structures for spacecraft and aircraft applications", Compos. Struct., 76(1-2), 182-189. https://doi.org/10.1016/j.compstruct.2006.06.025.
- Vasiliev, V., Barynin, V. and Rasin, A. (2001), "Anisogrid lattice structures-survey of development and application", Compos. Struct., 54(2-3), 361-370. https://doi.org/10.1016/S0263-8223(01)00111-8.
- Vasiliev, V.V. (2017), Mechanics of Composite Structures, CRC Press
- Vasiliev, V.V. and Morozov, E.V. (2013), Advanced Mechanics of Composite Materials and Structural Elements, Newnes
- Vasiliev, V.V., Barynin, V.A. and Razin, A.F. (2012), "Anisogrid composite lattice structures-Development and aerospace applications", Compos. Struct., 94(3), 1117-1127. https://doi.org/10.1016/j.compstruct.2011.10.023.
- Wang, S. (1997), "A unified Timoshenko beam B-spline Rayleigh-Ritz method for vibration and buckling analysis of thick and thin beams and plates", Int. J. Numer. Meth. Eng., 40(3), 473-491. https://doi.org/10.1002/(SICI)1097-0207(19970215)40:3<473::AID-N 75>3.0.CO;2-U.
- Zheng, Q., Ju, S. and Jiang, D. (2014), "Anisotropic mechanical properties of diamond lattice composites structures", Compos. Struct., 109, 23-30. https://doi.org/10.1016/j.compstruct.2013.10.053.
- Zhou, D., Cheung, Y., Au, F. and Lo, S. (2002), "Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method", Int. J. Solids Struct., 39(26), 6339-6353. https://doi.org/10.1016/S0020-7683(02)00460-2.