DOI QR코드

DOI QR Code

The U-frame concept to assess the stability of chords of Warren-truss bridges with independent cross-beam decks

  • Received : 2023.10.28
  • Accepted : 2024.06.20
  • Published : 2024.07.10

Abstract

Analytical methods for assessment of the out-of-plane buckling of unbraced top chords of truss bridges may look obsolete while comparing them to finite element analysis. However they are, usually, superior when rapid assessment is necessary. Analytical methods consider the top chord as a bar on elastic supports provided by bracing (Holt, Timoshenko). Correct assessment of the support elasticity (stiffness) is crucial. In the case of truss bridge spans of traditional structural layout (cross-beams at the truss chord nodes only), the elasticity may be set based on the analysis of the, so called, U-frame stiffness. Here the analyses consider the U-frame itself (a pair of verticals and a cross-beam) or the U-frame with adjacent diagonals or the pair of diagonals (in the absence of verticals) and the members of the bottom chord in the adjacent panels. For all the cases, the stability analysis of the chord as a bar in compression is necessary. Unfortunately, the method cannot be applied to contemporary truss bridges without verticals, that usually have independent cross-beam decks (the cross-beams attached to truss chords at their nodes and between them). This is the motivation for the analysis resulting in the method of setting the stiffness of the equivalent U-frame for the aforementioned truss bridges. Truss girders of both, gussetless and gusseted, joints are taken into account.

Keywords

Acknowledgement

The financial support by the Ministry of Education and Science of Republic of Poland, grant no. 0413/SBAD/6601, is kindly acknowledged.

References

  1. Afshana, S., Theofanousb, M., Wangc, J., Gkantoud, M., Gardnere, L. (2019), "Testing, numerical simulation and design of prestressed high strength steel arched trusses", Eng. Struct., 183, 510-522. https://doi.org/10.1016/j.engstruct.2019.01.007.
  2. Balaz, I.J., Kolekova, Y. and Moroczova, L. (2019), "Stability analysis of compression member on elastic supports", Procedia Struct. Integrity, 17, 734-741. https://doi.org/10.1016/j.prostr.2019.08.098.
  3. Biegus, A. (2015), "Trapezoidal sheet as a bracing preventing flat trusses from out-of-plane buckling", Archives Civil Mech. Eng., 15, 735-741. http://dx.doi.org/10.1016/j.acme.2014.08.007.
  4. Biegus, A. and Wojczyszyn, D. (2011), "Studies on buckling lengths of chords for out-of-plane instability", Archives Civil Mech. Eng., 11(3), 507-517 https://doi.org/10.1016/S1644-9665(12)60098-3
  5. Birajdar, H.S., Maiti, P.R. and Singh, P.K. (2014), "Failure of Chauras bridge", Eng. Fail. Anal., 45, 339-346. http://dx.doi.org/10.1016/j.engfailanal.2014.06.015.
  6. Brown, H.J., Green, P.S., Ryan, J.L. and Reigles, D.G. (2014), "Analytical investigation of the stability and post-buckling behavior of large-scale truss assemblies", Proceedings of the Annual Stability Conference, Structural Stability Research Council, Toronto, March 25-28
  7. Choudhury, J.R. and Hasnat, A. (2015), "Bridge collapses around the world: Causes and mechanisms", Proceedings of the IABSEJSCE Joint Conference on Advances in Bridge Engineering-III, August 21-22, Bangladesh, 26-34.
  8. Dawe, J.L., Liu, Y. and Li, J.Y. (2010), "Strength and behaviour of cold-formed steel offset trusses", J. Construct. Steel Res., 66, 556-565. https://doi.org/10.1016/j.jcsr.2009.10.015.
  9. Dekker, N. and Burdzik, W. (2005), "A rational approach to obtaining effective lengths of compression members in framed structures", J. South African Institution Civil Eng., 47(3), 14-19
  10. DIN 18800 Part 2 (1990), Structural Steelwork. Analysis of safety against buckling of linear members and frames, Deutsches Institut Fur Normung E.V., Berlin, Germany 
  11. Dlubal RSTAB 9 (2023). https://www.dlubal.com/en/products/rstab-beamstructures/what-is-rstab
  12. Dowling, D. and Walbridge, S. (2018), "A comparative study of methods for analyzing aluminium pony truss structures", Proceedings of the 6th International Structural Specialty Conference, Fredericton, Canada, 13-16 June 2018, editors: Kaveh Arjomandi, Ashraf El Damatty
  13. Engesser, F. (1885), "Die Sicherung offener Brucken gegen Ausknicken", Centralbl. Bauverwaltung.
  14. Engesser, F. (1892), Die Zusatzkrafte und Nebenspannungen eisener Fachwerkbrucken, Vol. I, Die Zusatzkrafte, 1892, Vol. II, Die Nebenspannungen, 1893, Julius Springer, Berlin, Germany
  15. Fazelzadeh, S.A. and Kazemi-Lari, M.A. (2013), "Stability analysis of partially loaded Leipholz column carrying a lumped mass and resting on elastic foundation", J. Sound Vib., 332, 595-607. http://dx.doi.org/10.1016/j.jsv.2012.09.013.
  16. Galambos, T. (1998), Guide to Stability Design Criteria for Metal Structures, John Wiley & Sons. New York, USA
  17. Gao, L., Bai, L., Jiang, K., Wang, Q. and He, X. (2018), "The stability of a movable high-strength inverted-triangular steel bridge", Mathem. Prob. Eng., 1568629. https://doi.org/10.1155/2018/1568629.
  18. Holt, E. (1952), "Buckling of a Pony Truss Bridge. Stability of Bridge Chords without Lateral Bracing.", Report No. 2. Column Research Council (U.S.). Pennsylvania. Department of Highways. Bethlehem, PA, USA
  19. Iwicki, P. (2010), "Sensitivity analysis of critical forces of trusses with side bracing", J. Construct. Steel Res., 66, 923-930. http://doi.org/10.1016/j.jcsr.2010.02.004.
  20. Jankowska-Sandberg, J. and Kolodziej, J. (2013), "Experimental study of steel truss lateral-torsional buckling", Eng. Struct., 46, 165-172. http://doi.org/10.1016/j.engstruct.2012.07.033.
  21. Jorfi, S.S. and Gandomkar, S.A. (2022), "Investigation progressive collapse of K-Model steel truss bridge under additional live load following bridge repairs", AUT J. Civil Eng., 6(2), 191-204. https://doi.org/10.22060/ajce.2022.20830.5781.
  22. Korcz-Konkol, N. and Iwicki, P. (2018), "Stability of roof trusses stiffened by trapezoidal sheeting and purlins", MATEC Web of Conferences 219, 02006. BalCon 2018. https://doi.org/10.1051/matecconf/201821902006.
  23. Krajewski, M. and Iwicki, P. (2015), "Analysis of brace stiffness influence on stability of the truss", Int. J. Appl. Mech. Eng., 20(1), 97-108. https://doi.org/10.1515/ijame-2015-0007.
  24. Lee, S.L. and Clough, R.W. (1958), "Stability of pony truss bridges", Public. Int. Assoc. Bridge Struct. Eng., 18, 91-112. https://doi.org/10.5169/seals-16509.
  25. Liyanage, M.L.L.N. and Hidallana-Gamage, H.D. (2021), "Improve the lateral stability of variable height steel truss type pedestrian bridges in Sri Lanka", Proceedings of Moratuwa Engineering Research Conference, Moratuwa. https://doi.org/10.1109/MERCON52712.2021.9525772
  26. Lopez, S., Makoond, N., Sanchez-Rodriguez, A. and Adam, J.M. and Riveiro, B. (2023), "Learning from failure propagation in steel truss bridges", Eng. Fail. Anal., 152, 107488. https://doi.org/10.1016/j.engfailanal.2023.107488.
  27. Mashayekhi, M. and Santini-Bell, E. (2020), "Fatigue assessment of a complex welded steel bridge connection utilizing a three-dimensional multi-scale finite element model and hotspot stress method", Eng. Struct., 214(4), 110624. https://doi.org/10.1016/j.engstruct.2020.110624.
  28. Paez, P.M. and Sensale, B. (2017), "Analysis of guyed masts by the stability functions based on the Timoshenko beam-column", Eng. Struct., 152, 597-606. https://doi.org/10.1016/j.engstruct.2017.09.036.
  29. Piatkowski, M. (2021), "Experimental research on load of transversal roof bracing due to geometrical imperfections of truss", Eng. Struct., 242, 112558. https://doi.org/10.1016/j.engstruct.2021.112558.
  30. PN-S-10052:1982 (1982), Obiekty mostowe. Konstrukcje stalowe. Projektowanie. [Bridges. Steel structures. Design.], Polski Komitet Normalizacji [Polish Committee for Normalisation], Warsaw, Poland
  31. Qingjie, W., Zixiang, Y. and Zhijun, L. (2020), "Nonlinear stability of the upper chords in half-through truss bridges", Steel Compos. Struct., 36(3), 307-319. https://doi.org/10.12989/scs.2020.36.3.307.
  32. Racanel, I.R. (2024), "Theoretical study regarding the general stability of upper chords of truss bridges as beams on continuous or discrete elastic supports", Infrastructures, 9, 56. https://doi.org/10.3390/infrastructures9030056.
  33. Ruocco, E. and Mallardo, V. (2016), "An enhanced exponential matrix approach aimed at the stability of piecewise beams on elastic foundation", Appl. Mathem. Comput., 285, 8-25. http://dx.doi.org/10.1016/j.amc.2016.03.020.
  34. Tchemodanova, S.P., Mashayekhi, M., Sanayei, M. and Bell, E.S. (2021), "Multiaxial fatigue assessment of complex steel connections: A case study of a vertical-lift gussetless truss bridge", Eng. Struct., 235, 111996. https://doi.org/10.1016/j.engstruct.2021.111996.
  35. Timoshenko, S. (1936), Theory of Elastic Stability, McGraw-Hill Book Company, Inc., New York. USA
  36. Timoshenko, S. and Gere, J. (1989), Theory of Elastic Stability, McGraw-Hill Book Company, Inc., London
  37. Wen, Q.J. and Yue, Z.X. (2020), "Elastic buckling property of the upper chords in aluminum half-through truss bridge", Structures, 27, 1919-1929. https://doi.org/10.1016/j.istruc.2020.07.057.
  38. Wongjeeraphat, R. and Helwig, T.A. (2011), "Buckling behavior of steel truss with torsional bracing", Proceedings of the Annual Stability Conference, Structural Stability Research Council, Pittsburgh, May 10-14
  39. Zhang, G., Liu, Y., Liu, J., Lan, S. and Yang, J. (2022), "Causes and statistical characteristics of bridge failures: A review", J. Traffic Transport. Eng. 9(3), 388-406. https://doi.org/10.1016/j.jtte.2021.12.003
  40. Zhou, Q., He, W., Zhou, Z., Guo, W. and Liu, S. (2023), "Experimental and theoretical studies on hysteretic behavior of friction energy dissipation composite chord under quasi-static tests", Materials, 16, 2885. https://doi.org/10.3390/ma16072885.
  41. Ziemian, R. (2010), Guide to Stability Design Criteria for Metal Structures, John Wiley & Sons, Inc., New York, USA.