DOI QR코드

DOI QR Code

Finite element analysis and theoretical modeling of GFRP-reinforced concrete compressive components having waste tire rubber aggregates

  • Mohamed Hechmi El Ouni (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Ali Raza (Department of Civil Engineering, University of Engineering and Technology Taxila)
  • Received : 2022.05.14
  • Accepted : 2024.06.24
  • Published : 2024.07.10

Abstract

The management of waste tire rubber has become a pressing environmental and health issue, requiring sustainable solutions to mitigate fire hazards and conserve natural resources. The performance of waste materials in structural components needs to be investigated to fabricate sustainable structures. This study aims to investigate the behavior of glass fiber reinforced polymer (GFRP) reinforced rubberized concrete (GRRC) compressive components under compressive loads. Nine GRRC circular compressive components, varying in longitudinal and transverse reinforcement ratios, were constructed. A 3D nonlinear finite element model (FEM) was proposed by means of the ABAQUS software to simulate the behavior of the GRRC compressive components. A comprehensive parametric analysis was conducted to assess the impact of different parameters on the performance of GRRC compressive components. The experimental findings demonstrated that reducing the spacing of GFRP stirrups enhanced the ductility of GRRC compressive components, while the addition of rubberized concrete further improved their ductility. Failure in GRRC compressive components occurred in a compressive columnar manner, characterized by vertical cracks and increased deformability. The finite element simulations closely matched the experimental results. The proposed empirical model, based on 600 test samples and considering the lateral confinement effect of FRP stirrups, demonstrated higher accuracy (R2 = 0.835, MSE = 171.296, MAE = 203.549, RMSE = 195.438) than previous models.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP 2/147/45.

References

  1. ACI 440.1R (2015), Guide for the Design and Construction of Concrete Reinforced with FRP Bars. Farmington Hills, MI, USA.
  2. ACI 440.3R (2004), Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures. Farmington Hills, MI, USA.
  3. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2013), "Axial capacity of circular concrete compressive components reinforced with GFRP bars and spirals", J. Compos. Construct., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.00004.
  4. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2014), "Axial capacity of circular concrete compressive components reinforced with GFRP bars and spirals", J. Compos. Construct., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438.
  5. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2014), "Strength and axial behavior of circular concrete compressive components reinforced with CFRP bars and spirals", J. Compos. Construct., 18(2), 04013035. https://doi.org/10.1061/(ASCE)CC.1943-5614.00004.
  6. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2015), "Theoretical stress-strain model for circular concrete compressive components confined by GFRP spirals and hoops", Eng. Struct., 102, 202-213. https://doi.org/10.1016/j.engstruct.2015.08.020.
  7. Afshin, H., Shirazi M.R.N. and Abedi, K. (2019), "Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete compressive components of bridge by means of combination of FRP wrapping and steel profiles", Steel Compos. Struct., 30(3), 231-251. https://doi.org/10.12989/scs.2019.30.3.231.
  8. Ahmad, A., Khan, QUZ. And Raza, A. (2020), "Reliability analysis of strength models for CFRP-confined concrete cylinders", Compos. Struct., 112312. https://doi.org/10.1016/j.compstruct.2020.112312.
  9. AlAjarmeh, O.S., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2019), "Axial performance of hollow concrete compressive components reinforced with GFRP composite bars with different reinforcement ratios", Compos. Struct., 213, 153-164. https://doi.org/10.1016/j.compstruct.2019.01.096.
  10. Ali, L., Nawaz, A., Bai, Y., Raza, A., Anwar, M.K., Raheel Shah, S.A. and Raza, S.S. (2020), "Numerical simulations of GFRP-reinforced compressive components having polypropylene and polyvinyl alcohol fibers", Complexity, 2020. https://doi.org/10.1155/2020/8841795.
  11. Aslam, H.M.U., Sami, S. and Raza, A. (2021), "Axial compressive behavior of damaged steel and GFRP bars reinforced concrete compressive components retrofitted with CFRP laminates", Compos. Struct., 258, 113206. https://doi.org/10.1016/j.compstruct.2020.113206.
  12. Barth, K. and Wu, H. (2006), "Efficient nonlinear finite element modeling of slab on steel stringer bridges", Finite Elements Anal. Des., 42(14-15), 1304-1313. https://doi.org/10.1016/j.finel.2006.06.004.
  13. Berradia, M. and Kassoul, A. (2018), "Ultimate strength and strain models proposed for CFRP confined concrete cylinders", Steel Compos. Struct., 29(4), 465-481. https://doi.org/10.12989/scs.2018.29.4.465.
  14. Bompa, D. and Elghazouli, A. (2020). "Stress-strain response and practical design expressions for FRP-confined recycled tire rubber concrete", Construct. Build. Mater., 237, 117633. https://doi.org/10.1016/j.conbuildmat.2019.117633.
  15. Buckhouse, E.R. (1997), "External flexural reinforcement of existing reinforced concrete beams by means of bolted steel channels", Master's Theses (1922-2009) Access restricted to Marquette Campus. 3989.
  16. CAN/CSA S806-12 (2012), Design and Construction of Building Structures with Fibre-Reinforced Polymer. Toronto, ON, Canada.
  17. Chi, Y., Xu, L. and Yu, H.S. (2014), "Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete by means of a non-associated plasticity and its numerical implementation", Compos. Struct., 111, 497-509. https://doi.org/10.1016/j.compstruct.2014.01.025.
  18. Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete by means of modified concrete damaged plasticity", Eng. Struct., 148, 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039.
  19. Choo, C.C., Harik, I.E. and Gesund, H. (2006), "Minimum reinforcement ratio for fiber-reinforced polymer reinforced concrete rectangular compressive components", ACI Mater. J. 103(3), 460-466. https://doi.org/10.14359/15325.
  20. Choo, C.C., Harik, I.E. and Gesund, H. (2006), "Strength of rectangular concrete compressive components reinforced with fiber-reinforced polymer bars", ACI Struct. J., 103(3), 452-459. https://doi.org/10.14359/15324.
  21. Dahmani, L., Khennane, A. and Kaci, S. (2010), "Crack identification in reinforced concrete beams by means of ANSYS software", Strength Mater., 42(2), 232-240. https://doi.org/10.1007/s11223-010-9212-6.
  22. Dong, H.-L., Wang, D., Wang, Z. and Sun, Y. (2018), "Axial compressive behavior of square concrete compressive components reinforced with innovative closed-type winding GFRP stirrups", Compos. Struct., 192, 115-125. https://doi.org/10.1016/j.compstruct.2018.02.092.
  23. El Ouni, M.H., Raza, A., Elhadi, K.M., Azab, M. and Arshad, M. (2022), "Parametric investigation of GFRP-RCC jute fibre-reinforced recycled aggregate concrete elements", Structures, 45, 1043-1061. https://doi.org/10.1016/j.istruc.2022.09.068.
  24. Elchalakani, M., Aly, T. and Abu-Aisheh, E. (2016), "Mechanical features of rubberised concrete for road side barriers", Australian J. Civil Eng., 14(1), 1-12. https://doi.org/10.1080/14488353.2015.1092631.
  25. Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed Ali, M. S. and Yang, B. (2019), "Experimental investigation of rectangular air-cured geopolymer concrete compressive components reinforced with GFRP bars and stirrups", J. Compos. Construct., 23(3), 04019011. https://doi.org/10.1061/(ASCE)CC.1943-5614.000093.
  26. Elchalakani, M., Karrech, A., Dong, M., Ali, M.S.M. and Yang, B. (2018), "Experiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular compressive components subjected to concentric and eccentric axial loading", Structures, 14, 273-289. https://doi.org/10.1016/j.istruc.2018.04.001.
  27. Fattuhi, N. and Clark, L. (1996), "Cement-based materials containing shredded scrap truck tire rubber", Construct. Build. Mater., 10(4), 229-236. https://doi.org/10.1016/0950-0618(96)00004-9.
  28. Gholampour, A., Ozbakkaloglu, T. and Hassanli, R. (2017), "Behavior of rubberized concrete under active confinement", Construct. Build. Mater., 138, 372-382. https://doi.org/10.1016/j.conbuildmat.2017.01.105.
  29. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2016), "Axial load-moment interaction diagram of circular concrete compressive components reinforced with CFRP bars and spirals: Experimental and theoretical investigations", J. Compos. Construct., 21(2), 04016092. https://doi.org/10.1061/(ASCE)CC.1943-5614.000074.
  30. Hadhood, A., Mohamed, H.M. and Benmokrane. B/ (2016), "Axial load-moment interaction diagram of circular concrete compressive components reinforced with CFRP bars and spirals, experimental and theoretical investigations", J. Compos. Construct., 21(2), 04016092. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000748.
  31. Hadhood, A., Mohamed, H.M., Ghrib, F. and Benmokrane, B. (2017), "Efficiency of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete compressive components under combined axial and flexural loads", Compos. Part B: Eng., 114, 223-236. https://doi.org/10.1016/j.compositesb.2017.01.063.
  32. Hadhood, A., Mohamed, HM. and Benmokrane, B. (2017), "Failure envelope of circular concrete compressive components reinforced with glass fiber-reinforced polymer bars and spirals", ACI Struct. J., 114(6), 1417-1428. https://doi.org/10.14359/51689498.
  33. Hadi, M. and Youssef, J. (2016), "Experimental investigation of GFRP-reinforced and GFRP-encased square concrete specimens under axial and eccentric load, and four-point bending test", J. Compos. Construct., 20(5), 04016020. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000675.
  34. Hadi, M.N., Hasan, H.A. and Sheikh, M.N. (2017), "Experimental investigation of circular high-strength concrete compressive components reinforced with glass fiber-reinforced polymer bars and helices under different loading conditions", J. Compos. Construct., 21(4), 04017005. https://doi.org/10.1061/(asce)cc.1943-5614.0000784.
  35. Hadi, M.N., Karim, H. and Sheikh, M.N. (2016), "Experimental investigations on circular concrete compressive components reinforced with GFRP bars and helices under different loading conditions", J. Compos. Construct., 20(4), 04016009.
  36. Hales, T.A., Pantelides, C.P. and Reaveley, L.D. (2017), "Analytical buckling model for slender FRP-reinforced concrete compressive components", Compos. Struct., 176, 33-42. https://doi.org/10.1016/j.compstruct.2017.05.034.
  37. Hales, T.A., Pantelides, C.P., Sankholkar, P. and Reaveley, L.D. (2017), "Analysis-oriented stress-strain model for concrete confined with fiber-reinforced polymer spirals", ACI Struct. J., 114(5), https://doi.org/10.14359/51689788.
  38. Hu, H., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube compressive components with confinement effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(132.
  39. Huang, Z. and Liew, J.Y.R. (2015), "Nonlinear finite element modelling and parametric study of curved steel-concrete-steel double skin composite panels infilled with ultra-lightweight cement composite", Construct. Build. Mater., 95, 922-938. https://doi.org/10.1016/j.conbuildmat.2015.07.134.
  40. Jiang, T. and Teng, J. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
  41. Karabinis, A.I. and Rousakis, T.C. (2002), "Concrete confined by FRP material: a plasticity approach", Eng. Struct., 24, 923-932. https://doi.org/10.1016/S0141-0296(02)00011-1.
  42. Karim, H., Sheikh M.N. and Hadi, M.N. (2016), "Axial load-axial shortening behaviour of circular concrete compressive components reinforced with GFRP bars and helices", Construct. Build. Mater., 112, 1147-1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
  43. Karrech, A., Abbassi, F, Basarir, H. and Attar, M. (2017), "Self-consistent fractal damage of natural geo-materials in finite strain", Mech. Mater., 104, 107-120. https://doi.org/10.1016/j.mechmat.2016.08.017.
  44. Keykha, A.H. (2017), "CFRP strengthening of steel compressive components subjected to eccentric compression loading", Steel Compos. Struct., 23(1), 87-94. https://doi.org/10.12989/.2017.23.1.087.
  45. Keykha, A.H. (2017), "Numerical investigation of SHS steel beam-compressive components strengthened by means of CFRP composite", Steel Compos. Struct., 25(5), 593-601. https://doi.org/10.12989/scs.2017.25.5.593.
  46. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical features of concrete containing a high volume of tire-rubber particles", Waste Manag., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
  47. Khan, H., Rafique, M., Karam, S., Ahmad, K. and Bashir, A. (2014), "Identification of shear cracks in reinforced beams by means of finite element method (ANSYS)", Pakistan J. Sci., 66(1), 50.
  48. Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial-flexural interactions of GFRP-CFFT compressive components with and without reinforcing GFRP bars", J. Compos. Construct., 21(3), 04016109. https://doi.org/10.1061/(asce)cc.1943-5614.0000771.
  49. Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213.
  50. Liang, J., Zhang, G., Wang, J. and Hu, M. (2019), "Mechanical behaviour of partially encased composite compressive components confined by CFRP under axial compression", Steel Compos. Struct., 31(2), 125-131. https://doi.org/10.1016/j.compstruct.2021.114468.
  51. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  52. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to compressive component joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. https://doi.org/10.12989/scs.2019.30.3.271.
  53. Mander, J.B., Priestley, M. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  54. Maranan, G., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2016), "Behavior of concentrically loaded geopolymer-concrete circular compressive components reinforced longitudinally and transversely with GFRP bars", Eng. Struct., 117, 422-436. https://doi.org/10.1016/j.engstruct.2016.03.036.
  55. Mohamed, H., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete compressive components reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.000059.
  56. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete compressive components reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.000059.
  57. Pantelides, C.P., Gibbons, M.E. and Reaveley, L.D. (2013), "Axial load behavior of concrete compressive components confined with GFRP spirals", J. Compos. Construct., 17(3), 305-313. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000357.
  58. Rafique, U., Ali, A. and Raza, A. (2021), "Structural behavior of GFRP reinforced recycled aggregate concrete compressive components with polyvinyl alcohol and polypropylene fibers", Adv. Struct. Eng., 13694332211017997. https://doi.org/10.1177/13694332211017997.
  59. Raza, A. (2021), "Structural behavior of GFRP-reinforced circular HFRC compressive components under concentric and eccentric loading", Arab. J. Sci. Eng., 46(5), 4239-4252. https://doi.org/10.1007/s13369-020-04881-0.
  60. Raza, A. and Khan, Q. (2020), "Experimental and theoretical study of GFRP hoops and spirals in hybrid fiber reinforced concrete short compressive components", Mater. Struct., 53(6), 1-14. https://doi.org/10.1617/s11527-020-01575-9.
  61. Raza, A. and Khan, Q.U.Z. (2022), "Efficiency of GFRP reinforcement in concrete compressive components having hybrid fibres: experiments and finite element analysis", Mag. Concrete Res., 74(21), 1103-1119. https://doi.org/10.1680/jmacr.20.00274.
  62. Raza, A. and Rafique, U. (2020), "Efficiency of GFRP bars and hoops in recycled aggregate concrete compressive components: Experimental and numerical study", Compos. Struct., 255, 112986. https://doi.org/10.1016/j.compstruct.2020.112986.
  63. Raza, A., Ali, B. and Aslam, H.M.U. (2021), "Axial performance of hybrid fiber reinforced concrete compressive components having GFRP longitudinal bars and spirals", J. Build. Eng., 35, 102017. https://doi.org/10.1016/j.jobe.2020.102017.
  64. Raza, A., Ali, B., Masood. B. and ur Rehman, A. (2021), "Axial performance of GFRP composite bars and spirals in circular hollow concrete compressive components", Structures, 29, 600-613. https://doi.org/10.1016/j.istruc.2020.11.043.
  65. Raza, A., Alomayri, T. and Berradia, M. (2021), "Rapid repair of partially damaged GFRP-reinforced recycled aggregate concrete compressive components by means of FRP composites", Mech. Adv. Mater. Struct., 29(27), 6070-6086. https://doi.org/10.1080/15376494.2021.1972368.
  66. Raza, A., Khan, Q. and Ahmad, A. (2021), "Investigation of HFRC compressive components reinforced with GFRP bars and spirals under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.111461.
  67. Raza, A., Khan, Q.U., Ahmad, A. (2020), "Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete compressive components confined with CFRP sheets", Comput. Concrete 25(5): 383-400. https://doi.org/10.12989/cac.2020.25.5.383
  68. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete components by means of CDP model in ABAQUS", Adv. Civil Eng., 2019. https://doi.org/10.1155/2019/1745341.
  69. Raza, A., M. H. El Ouni and J. Baili (2022). "Data-driven analysis on axial strength of GFRP-NSC compressive components based on practical artificial neural network tool." Composite Structures 291, 115598. https://doi.org/10.1016/j.compstruct.2022.115598
  70. Raza, A., M. H. El Ouni and M. Berradia (2021). "Structural Assessment of Eccentrically Loaded GFRP Reinforced Circular Concrete Compressive components: Experiments and Finite Element Analysis." Composite Structures: 114528. https://doi.org/10.1016/j.compstruct.2021.114528
  71. Raza, A., M. H. El Ouni, N. B. Kahla and H. F. Isleem (2022). "Seismic behavior of Double-Skin tubular E-waste concrete compressive components transversely confined with steel and GFRP tubes", Compos. Struct., 282, 115076. https://doi.org/10.1016/j.compstruct.2021.115076.
  72. Raza, A., Manalo, A.C., Rafique, U. and AlAjarmeh, O.S. (2021), "Concentrically loaded recycled aggregate geopolymer concrete compressive components reinforced with GFRP bars and spirals", Compos. Struct., 268, 113968. https://doi.org/10.1016/j.compstruct.2021.113968.
  73. Raza, A., Shah, S.A.R., Khan, AR., Aslam, M.A., Khan, T.A., Arshad, K., Hussan, S., Sultan, A., Shahzadi, G. and Waseem, M. (2020), "Sustainable FRP-confined symmetric concrete structures, an application experimental and numerical validation process for reference data", Appl. Sci., 10(1), 333. https://doi.org/10.3390/app10010333.
  74. Raza, A., Shah, S.A.R., ul Haq, F., Arshad, H., Raza, S.S., Farhan, M. and Waseem, M. (2020), "Prediction of axial load-carrying capacity of GFRP-reinforced concrete compressive components through artificial neural networks", Structures, 28, 1557-1571. https://doi.org/10.1016/j.istruc.2020.10.010.
  75. Samani, A.K. and Attard, M.M. (2012), "A stress-strain model for uniaxial and confined concrete under compression", Eng. Struct., 41, 335-349. https://doi.org/10.1016/j.engstruct.2012.03.027.
  76. Segre, N. and Joekes, I. (2000), "Use of tire rubber particles as addition to cement paste", Cement Concrete Res., 30(9), 1421-1425. https://doi.org/10.1016/S0008-8846(00)00373-2.
  77. Setvati, M.R. and Mustaffa, Z. (2018), "Rehabilitation of notched circular hollow sectional steel beam by means of CFRP patch", Steel Compos. Struct., 26(2), 151-161. https://doi.org/10.12989/scs.2018.26.2.151.
  78. Shahabi, R. and Narmashiri, K. (2018), "Effects of deficiency location on CFRP strengthening of steel CHS short compressive components", Steel Compos. Struct., 28(3), 267-278. https://doi.org/10.12989/scs.2018.28.3.267.
  79. Shayanfar, J. and Bengar, H.A. (2018), "A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-compressive component joints", Steel Compos. Struct., 27(1), 49-74. https://doi.org/10.12989/scs.2018.27.1.049.
  80. Shi, Y., Swait, T. and Soutis, C (2012), "Modelling damage evolution in composite laminates subjected to low velocity impact", Compos. Struct., 94(9), 2902-2913. https://doi.org/10.1016/j.compstruct.2012.03.039.
  81. Standard, A. (2010), General Purpose and Blended Cements. Standards Australia.
  82. Sun, L., Wei, M. and Zhang. N. (2017), "Experimental study on the behavior of GFRP reinforced concrete compressive components under eccentric axial load", Construct. Build. Mater., 152, 214-225. https://doi.org/10.1016/j.conbuildmat.2017.06.159.
  83. Tahenni, T., Bouziadi, F., Boulekbache, B. and Amziane, S. (2021), "Experimental and nonlinear finite element analysis of shear behaviour of reinforced concrete beams", Structures, 29, 1582-1596. https://doi.org/10.1016/j.istruc.2020.12.043.
  84. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2012), "Concrete compressive components reinforced longitudinally and transversally with glass fiber-reinforced polymer bars", ACI Struct. J., 109(4). https://doi.org/10.14359/51683874.
  85. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2012), "Concrete compressive components reinforced longitudinally and transversally with glass fiber-reinforced polymer bars", ACI Struct. J., 109(4), 551-558. https://doi.org/10.14359/51683874.
  86. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2014), "Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete compressive components with varying reinforcement types and ratios", ACI Struct. J., 111(2), 375-386. https://doi.org/10.14359/51686528.
  87. Wang, J. and Chen, Y. (2006), ABAQUS Application in Civil Engineering, Zhejiang University Press, China.
  88. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam compressive component connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  89. Xue, W., Peng, F, and Fang, Z. (2018), "Behavior and design of slender rectangular concrete compressive components longitudinally reinforced with fiber-reinforced polymer bars", ACI Struct. J., 115(2), 311-322. https://doi.org/10.14359/51701131.
  90. Yang, Y.-F. and Zhu, L.-T. (2009), "Recycled aggregate concrete filled steel SHS beam-compressive components subjected to cyclic loading", Steel Compos. Struct., 9(1), 19-38. https://doi.org/10.12989/scs.2009.9.1.019.
  91. Youssef, J. and Hadi, M.N. (2017), "Axial load-bending moment diagrams of GFRP reinforced compressive components and GFRP encased square compressive components", Construct. Build. Mater., 135, 550-564. https://doi.org/10.1016/j.conbuildmat.2016.12.125.
  92. Zhang, X. and Deng, Z. (2018), "Experimental study and theoretical analysis on axial compressive behavior of concrete compressive components reinforced with GFRP bars and PVA fibers", Construct. Build. Mater., 172, 519-532. https://doi.org/10.1016/j.conbuildmat.2018.03.237.