DOI QR코드

DOI QR Code

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi (Civil Engineering Department, University of Sistan and Baluchestan) ;
  • Mohammad Reza Sohrabi (Civil Engineering Department, University of Sistan and Baluchestan) ;
  • Seyed Morteza Kazemi (Department of Civil Engineering, Kashmar Branch, Islamic Azad University)
  • 투고 : 2021.02.02
  • 심사 : 2024.06.26
  • 발행 : 2024.07.10

초록

A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

키워드

참고문헌

  1. ANSI/AISC 358-16 (2016), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, American Institute of Steel Construction, Chicago, IL, USA.
  2. Askarian, H., Sohrabi, M.R. and Kazemi, S.M. (2021), "Investigating the behavior of a modular prefabricated steel moment connection with the through-plate panel zone system", Struct. Eng. Mech., 80(4), 433. https://doi.org/10.12989/sem.2021.80.4.433.
  3. Bayo, E., Cabrero, J. and Gil, B. (2006), "An effective component-based method to model semi-rigid connections for the global analysis of steel and composite structures", Eng. Struct., 28(1), 97-108. https://doi.org/10.1016/j.engstruct.2005.08.001.
  4. Bayo, E., Loureiro, A., Lopez, M. and da Silva, L.S. (2017), "General component based cruciform finite elements to model 2D steel joints with beams of equal and different depths", Eng. Struct., 152, 698-708. https://doi.org/10.1016/j.engstruct.2017.09.042.
  5. Brown, D., Iles, D., Brettle, M., Malik, A. and BCSA/SCI Connections Group (2013), Joints in Steel Construction: Moment-Resisting Joints to Eurocode 3. Vol BCSA/SCI Connections Group. London: The British Constructional Steel Work Association Limited.
  6. Cabrero, J. and Bayo, E. (2005), "Development of practical design methods for steel structures with semi-rigid connections", Eng. Struct., 27(8), 1125-1137. https://doi.org/10.1016/j.engstruct.2005.02.017.
  7. Coelho, A.G., da Silva, L.S. and Bijlaard, F.S. (2006), "Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method", Steel Compos. Struct., 6(1), 33. http://dx.doi.org/10.12989/scs.2006.6.1.033.
  8. Coelho, A.M.G. and Bijlaard, F.S. (2007), "Experimental behaviour of high strength steel end-plate connections", J. Constr. Steel Res., 63(9), 1228-1240. https://doi.org/10.1016/j.jcsr.2006.11.010.
  9. Coelho, A.M.G., Bijlaard, F.S. and da Silva, L.S. (2004), "Experimental assessment of the ductility of extended end plate connections". Eng. Struct., 26(9), 1185-1206. https://doi.org/10.1016/j.engstruct.2000.09.001.
  10. Da Silva, L.S., de Lima, L.R., da SVellasco, P.C. and de Andrade, S.A. (2004), "Behaviour of flush end-plate beam-to-column joints under bending and axial force", Steel Compos. Struct., 4(2), 77-94. https://doi.org/10.12989/scs.2004.4.2.077.
  11. Da Silva, L.S., Santiago, A. and Real, P.V. (2001), "A component model for the behaviour of steel joints at elevated temperatures", J. Constr. Steel Res., 57(11), 1169-1195. https://doi.org/10.1016/S0143-974X(01)00039-6.
  12. Da Silva, L.S., Santiago, A. and Real, P.V. (2002), "Post-limit stiffness and ductility of end-plate beam-to-column steel joints", Comput. Struct., 80(5-6), 515-531. https://doi.org/10.1016/S0045-7949(02)00014-7.
  13. De Lima, L., Vellasco, P. d. S., da Silva, J., Borges, L. and da Silva, L. (2005), "Post-Limit Stiffness Prediction of Semi-Rigid Joints Using Genetic Algorithms", Lat. Am. J. Solids Struct., 2(4), 305-320.
  14. Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct Multidiscipl Optim., 42, 755-768. https://doi.org/10.1007/s00158-010-0533-7.
  15. Del Savio, A., Nethercot, D., Vellasco, P., Andrade, S. and Martha, L. (2009), "Generalised component-based model for beam-to-column connections including axial versus moment interaction", J. Constr. Steel Res., 65(8-9), 1876-1895. https://doi.org/10.1016/j.jcsr.2009.02.011.
  16. Diaz, C., Victoria, M., Querin, O.M. and Marti, P. (2012), "Optimum design of semi-rigid connections using metamodels". J. Constr. Steel Res., 78, 97-106. https://doi.org/10.1016/j.jcsr.2012.06.013.
  17. Elflah, M., Theofanous, M., Dirar, S. and Yuan, H. (2019), "Behaviour of stainless-steel beam-to-column joints-Part 1: Experimental investigation", J. Constr. Steel Res., 152, 183-193. https://doi.org/10.1016/j.jcsr.2018.02.040.
  18. EN 1090-2. (2018), Execution of Steel Structures and Aluminium Structures. Part 2, Technical requirements for steel structures. European Committee for Standardization, London.
  19. EN 1993-1-1 (2005), Eurocode 3-Design of steel structures, CEN/TC 250/SC 3/WG 2 N 31, Brussels, Belgium.
  20. EN 1993-1-8 (2005), Eurocode 3; Part 1.8: Design of joints, CEN/TC 250/SC 3, Brussels, Belgium.
  21. Faella, C., Piluso, V. and Rizzano, G. (1999), Structural Steel Semirigid Connections: Theory, Design, and Software. CRC press: Boca Raton, FL, USA.
  22. Faridmehr, I., Nikoo, M., Pucinotti, R. and Bedon, C. (2021), "Application of component-based mechanical models and artificial intelligence to bolted beam-to-column connections", Appl. Sci., 11(5), 2297. https://doi.org/10.3390/app11052297.
  23. Fomento, D.E. (2011), Instruccion de Acero Estructural.
  24. Gao, S., Yang, B., Guo, L., Xu, M. and Fu, F. (2022), "Studies on CFST column to steel beam joints using endplates and long bolts under central column removal", Steel Compos. Struct., 42(2), 161-172.
  25. Ghasemi, M., Ghasri, M. and Salarnia, A. (2022), "ANFIS-TLBO Hybrid Approach to Predict Compressive Strength of Rectangular FRP Columns", Int. J. Optim. Civil Eng, 12(3), 399-410.
  26. Gil-Martin, L. and Hernandez-Montes, E. (2020), "A compact and simpler formulation of the component method for steel connections", J. Constr. Steel Res., 164, 105782. https://doi.org/10.1016/j.jcsr.2019.105782.
  27. Guzelbey, I.H., Cevik, A. and Gogus, M.T. (2006), "Prediction of rotation capacity of wide flange beams using neural networks", J. Constr. Steel Res., 62(10), 950-961. https://doi.org/10.1016/j.jcsr.2006.01.003.
  28. Hashim, F.A. and Hussien, A.G. (2022), "Snake Optimizer: A novel meta-heuristic optimization algorithm", Knowl Based Syst., 242, 108320. https://doi.org/10.1016/j.knosys.2022.108320.
  29. Hayalioglu, M. and Degertekin, S. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009.
  30. Hortencio, R.d.S. and Falcon, G.A.S. (2018), "Optimal design of beam-column connections of plane steel frames using the component method", Lat. Am. J. Solids Struct., 15. https://doi.org/10.1590/1679-78254247.
  31. Jaspart, J.-P. and Weynand, K. (2016), Design of Joints in Steel and Composite Structures, Ernst & Sohn, a Wiley branch, Brussels, Belgium.
  32. Kameshki, E. and Saka, M. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections", J. Constr. Steel Res., 59(1), 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4.
  33. Kazemi, S.M., Sohrabi, M.R. and Kazemi, H.H. (2019), "The effect of beam section property on the behavior of modular prefabricated steel moment connection", Steel Compos. Struct., 32(6), 769-778. https://doi.org/10.12989/scs.2019.32.6.769.
  34. Kazemi, S.M., Sohrabi, M.R. and Kazemi, H.H. (2021), "Design equations for prefabricated steel moment connections", Struct. Eng. Mech., 80(3), 313-321. https://doi.org/10.12989/sem.2021.80.3.313.
  35. Kazemi, T.M., Sohrabi, M. and Haji, K.H. (2017), "Study of BSB connections behavior under cyclic loads", Struct. Steel, 13(20), 31-43.
  36. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Int. Conf. Neural Netw., 4, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
  37. Klansek, U. and Kravanja, S. (2006), "Cost estimation, optimization and competitiveness of different composite floor systems-part 1: self-manufacturing cost estimation of composite and steel structures", J. Constr. Steel Res., 62(5), 434-448. https://doi.org/10.1016/j.jcsr.2005.08.005.
  38. Kristof, I., Novak, Z. and Hegyi, D. (2017), "A simplified method for the design of steel beam-to-column connections", Period. Polytech. Arch., 48(2), 79-86. https://doi.org/10.3311/PPar.11089.
  39. Kueh, A. (2021), "Artificial neural network and regressed beam-column connection explicit mathematical moment-rotation expressions", J. Build. Eng., 43, 103195. https://doi.org/10.1016/j.jobe.2021.103195.
  40. Liu, C., Tan, K.H. and Fung, T.C. (2015), "Component-based steel beam-column connections modelling for dynamic progressive collapse analysis", J. Constr. Steel Res., 107, 24-36. https://doi.org/10.1016/j.jcsr.2015.01.001.
  41. Nunez, E., Torres, R. and Herrera, R. (2017), "Seismic performance of moment connections in steel moment frames with HSS columns", Steel Compos. Struct, 25(3), 271-286. https://doi.org/10.12989/scs.2017.25.3.271.
  42. Oliveira, S., Costa, R., Shahbazian, A., Rebelo, C., Harada, Y. and da Silva, L.S. (2021), "Component-based method for quasi-static cyclic behaviour of steel joints", J. Constr. Steel Res., 181, 106551. https://doi.org/10.1016/j.jcsr.2021.106551. 
  43. Pavlovcic, L., Krajnc, A. and Beg, D. (2004), "Cost function analysis in the structural optimization of steel frames", Struct Multidiscipl Optim., 28, 286-295. https://doi.org/10.1007/s00158-004-0430-z.
  44. piluso, V., Faella, C. and Rizzano, G. (2000), Structural Semi-Rigid Connections: Theory, Design and Software: CRC Press: Boca Raton, FL, USA.
  45. Qiang, X., Wu, N., Luo, Y., Jiang, X. and Bijlaard, F. (2018), "Experimental and theoretical study on high strength steel extended endplate connections after fire", Int. J. Steel Struct., 18, 609-634. https://doi.org/10.1007/s13296-018-0020-3.
  46. Rao, R.V., Savsani, V.J. and Vakharia, D. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aided Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
  47. Simoes, L. (1996). "Optimization of frames with semi-rigid connections". Comput. Struct., 60(4), 531-539. https://doi.org/10.1016/0045-7949(95)00427-0.
  48. Torbaghan, M.K., Sohrabi, M.R. and Kazemi, H.H. (2018), "Investigating the behavior of specially prefabricated steel moment connection under cyclic loading", Adv Steel Constr, 14(3), 412-423. https://doi.org/10.18057/IJASC.2018.14.3.6.
  49. Yang, H., Liu, W. and Ren, X. (2016), "A component method for moment-resistant glulam beam-column connections with glued-in steel rods", Eng. Struct., 115, 42-54. https://doi.org/10.1016/j.engstruct.2016.02.024.
  50. Yun, X. and Gardner, L. (2017), "Stress-strain curves for hot-rolled steels". J. Constr. Steel Res., 133, 36-46. https://doi.org/10.1016/j.jcsr.2017.01.024.
  51. Zoetemeijer, P. (1974), "A design method for the tension side of statically loaded bolted beam-to-column connections", Heron, 20(1), 1-59.