DOI QR코드

DOI QR Code

Numerical simulation on capillary absorption of cracked SHCC with integral water repellent treatment

  • Yao Luan (Department of Civil and Environmental Engineering, Saitama University) ;
  • Tetsuya Ishida (Department of Civil Engineering, The University of Tokyo)
  • 투고 : 2023.10.20
  • 심사 : 2024.01.01
  • 발행 : 2024.07.25

초록

Strain-hardening cement-based composites (SHCC) under cracked condition exhibits remarkable capillary absorption due to water ingress from multiple cracks. Surface treatment using water repellent agents is an effective way for improving water resistance of SHCC, but the water resistance may remarkably decrease when cracks penetrate impregnation depth. Another way is to add water repellent agents directly into the mixture, offering SHCC integral water repellency even if cracks form later. However, although integral water repellent treatment has been proved feasible by previous studies, there is still lack of simulation work on the treated SHCC for evaluating its durability. This study presents a simulation method for capillary absorption of cracked SHCC with integral treatment based on a multi-scale approach proposed in the authors' previous work. The approach deals with water flows in bulk matrix and multiple cracks using two individual transport equations, respectively, whereas water absorbed from a crack to its adjacent matrix is treated as the mass exchange of the two equations. In this study, the approach is enhanced for the treated SHCC by integrating the influencing of water repellency into the two transport equations as well as the mass exchange term. Using the enhanced approach, capillary absorption of water repellent SHCC under cracked condition is simulated, showing much more reduced water ingress than the untreated concrete, which is consistent with total absorption data from previous tests. This approach is also capable of simulating water spatial distribution with time in treated SHCC reasonably.

키워드

과제정보

This work was supported by JSPS KAKENHI Grant Number 22K04257.

참고문헌

  1. Bachmann, J., Deurer, M. and Arye, G. (2007), "Modeling water movement in heterogeneous water-repellent soil: 1. Development of a contact angle-dependent water-retention model", Vadose Zone J., 6(3), 436-445. https://doi.org/10.2136/vzj2006.0060.
  2. Basheer, P.A.M., Basheer, L., Cleland, D.J. and Long, A.E. (1997), "Surface treatments for concrete: Assessment methods and reported performance", Constr. Build. Mater., 11(7), 413-429. https://doi.org/10.1016/S0950-0618(97)00019-6.
  3. Boshoff, W.P. and Adendorff, C.J. (2013), "Effect of sustained tensile loading on SHCC crack widths", Cement Concrete Compos., 37, 119-125. https://doi.org/10.1016/j.cemconcomp.2012.11.009.
  4. Dai, J.G., Akira, Y., Wittmann, F.H., Yokota, H. and Zhang, P. (2010), "Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks", Cement Concrete Compos., 32(2), 101-109. http://dx.doi.org/10.1016/j.cemconcomp.2009.11.001.
  5. De Vries, I.J. and Polder, R.B. (1997), "Hydrophobic treatment of concrete", Constr. Build. Mater., 11(4), 259-265. https://doi.org/10.1016/S0950-0618(97)00046-9.
  6. Felekoglu, B. and Keskinates, M. (2016), "Multiple cracking analysis of HTPP-ECC by digital image correlation method", Comput. Concrete, 17(6), 831-848. https://doi.org/10.12989/cac.2016.17.6.831.
  7. Frank, T.E., Lepech, M.D. and Billington, S.L. (2018), "Finite element models of reinforced ECC beams subjected to various cyclic deformation", Comput. Concrete, 22(3), 305-317. https://doi.org/10.12989/cac.2018.22.3.305.
  8. Hanzic, L., Kosec, L. and Anzel, I. (2010), "Capillary absorption in concrete and the Lucas-Washburn equation", Cement Concrete Compos., 32(1), 84-91. https://doi.org/10.1016/j.cemconcomp.2009.10.005.
  9. Hung, C.-C. and Su, Y.-F. (2013), "On modeling coupling beams incorporating strain-hardening cement-based composites", Comput. Concrete, 12(4), 565-583. https://doi.org/10.12989/cac.2013.12.4.565.
  10. Ishida, T., Maekawa, K. and Kishi, T. (2007), "Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history", Cement Concrete Res., 37(4), 565-578. https://doi.org/10.1016/j.cemconres.2006.11.015.
  11. Jiesheng, L., Ke, L., Juan, Z. and Jixiang, L. (2016), "Properties of polymer-modified mortar using silane as an integral additive", J. Test. Eval., 44(1), 175-182. https://doi.org/10.1520/JTE20140057.
  12. Kobayashi, K. and Kojima, Y. (2017), "Effect of fine crack width and water cement ratio of SHCC on chloride ingress and rebar corrosion", Cement Concrete Compos., 80, 235-244. https://doi.org/10.1016/j.cemconcomp.2017.03.006.
  13. Kobayashi, K., Hosokawa, K., Hattori, Y. and Yun, H.D. (2021), "Influence of bending cracks on the distribution of rebar corrosion in SHCC", Cement Concrete Compos., 122, 104146. https://doi.org/10.1016/j.cemconcomp.2021.104146.
  14. Kobayashi, K., Le Ahn, D. and Rokugo, K. (2016), "Effects of crack properties and water-cement ratio on the chloride proofing performance of cracked SHCC suffering from chloride attack", Cement Concrete Compos., 69, 18-27. https://doi.org/10.1016/j.cemconcomp.2016.03.002.
  15. Kobayashi, K., Suzuki, M., Dung, L.A., Yun, H.D. and Rokugo, K. (2018), "The effects of PE and PVA fiber and water cement ratio on chloride penetration and rebar corrosion protection performance of cracked SHCC", Constr. Build. Mater., 178, 372-383. https://doi.org/10.1016/j.conbuildmat.2018.05.163.
  16. Lee, B.Y., Ismail, M.A., Kim, H.J., Yoo, S.W. and Kwon, S.J. (2017), "Numerical technique for chloride ingress with cover concrete property and time effect", Comput. Concrete, 20(2), 185-196. https://doi.org/10.12989/cac.2017.20.2.185.
  17. Lepech, M.D. and Li, V.C. (2009), "Water permeability of engineered cementitious composites", Cement Concrete Compos., 31(10), 744-753. https://doi.org/10.1016/j.cemconcomp.2009.07.002.
  18. Li, J., Weng, J. and Yang, E.H. (2019), "Stochastic model of tensile behavior of strain-hardening cementitious composites (SHCCs)", Cement Concrete Res., 124, 105856. https://doi.org/10.1016/j.cemconres.2019.105856.
  19. Li, V.C. (2003), "On engineered cementitious composites (ECC): A review of the material and its applications", J. Adv. Concrete Technol., 1(3), 215-230. https://doi.org/10.3151/jact.1.215.
  20. Luan, Y. and Asamoto, S. (2023), "Experimental study on mortar with the addition of hydrophobic silicone oil for water absorption, strength, and shrinkage", Constr. Build. Mater., 367, 130323. https://doi.org/10.1016/j.conbuildmat.2023.130323.
  21. Luan, Y. and Ishida, T. (2021), "A multi-scale approach for simulation of capillary absorption of cracked SHCC based on crack pattern and water status in micropores", Mater. Struct., 54(2), 71. https://doi.org/10.1617/s11527-021-01664-3.
  22. Maekawa, K., Ishida, T. and Kishi, T. (2003), "Multi-scale modeling of concrete performance", J. Adv. Concrete Technol., 1(2), 91-126. https://doi.org/10.3151/jact.1.91.
  23. Maekawa, K., Ishida, T. and Kishi, T. (2009), Multi-Scale Modeling of Structural Concrete, Taylor & Francis, London, UK.
  24. Mechtcherine, V. (2012), "Towards a durability framework for structural elements and structures made of or strengthened with high-performance fibre-reinforced composites", Constr. Build. Mater., 31, 94-104. https://doi.org/10.1016/j.conbuildmat.2011.12.072.
  25. Medeiros, M. and Helene, P. (2008), "Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete", Mater. Struct., 41(1), 59-71. https://doi.org/10.1617/s11527-006-9218-5.
  26. Meschke, G. and Grasberger, S. (2003), "Numerical modeling of coupled hygromechanical degradation of cementitious materials", J. Eng. Mech., 129(4), 383-392. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:4(383)
  27. Miyazato, S. and Hiraishi, Y. (2013), "Durability against steel corrosion of HPFRCC with bending cracks", J. Adv. Concrete Technol., 11(4), 135-143. https://doi.org/10.3151/jact.11.135.
  28. Moriconi, G. and Tittarelli, F. (2003), "Use of hydrophobic agents as concrete admixtures", Proceedings of the Sixth CANMET/ACI International Conference on Durability of Concrete, Thessaloniki, Greece, June.
  29. Paul, S.C. and van Zijl, G.P. (2014), "Crack formation and chloride induced corrosion in reinforced strain hardening cement-based composite (R/SHCC)", J. Adv. Concrete Technol., 12(9), 340-351. https://doi.org/10.3151/jact.12.340.
  30. Ranade, R., Zhang, J., Lynch, J.P. and Li, V.C. (2014), "Influence of micro-cracking on the composite resistivity of engineered cementitious composites", Cement Concrete Res., 58, 1-12. https://doi.org/10.1016/j.cemconres.2014.01.002.
  31. Sahmaran, M. and Li, V.C. (2009), "Influence of microcracking on water absorption and sorptivity of ECC", Mater. Struct., 42(5), 593-603. https://doi.org/10.1617/s11527-008-9406-6.
  32. Savija, B., Lukovic, M. and Schlangen, E. (2017), "Influence of cracking on moisture uptake in strain-hardening cementitious composites", J. Nanomech. Micromech., 7(1), 04016010. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000114.
  33. Schrofl, C., Mechtcherine, V., Kaestner, A., Vontobel, P., Hovind, J. and Lehmann, E. (2015), "Transport of water through strain-hardening cement-based composite (SHCC) applied on top of cracked reinforced concrete slabs with and without hydrophobization of cracks - Investigation by neutron radiography", Constr. Build. Mater., 76, 70-86. https://doi.org/10.1016/j.conbuildmat.2014.11.062.
  34. Tittarelli, F., Carsana, M. and Ruello, M.L. (2014), "Effect of hydrophobic admixture and recycled aggregate on physical-mechanical properties and durability aspects of no-fines concrete", Constr. Build. Mater., 66, 30-37. http://doi.org/10.1016/j.conbuildmat.2014.05.043.
  35. Toshiyuki, K., Kabele, P., Fukuyama, H., Uchida, Y., Suwada, H. and Slowik, V. (2012), Strain Hardening Cement Composites: Structural Design and Performance: State-of-the-Art Report of the RILEM Technical Committee 208-HFC, SC3, Springer Dordrecht, Berlin, Germany.
  36. Turk, K., Kina, C. and Tanyildizi, H. (2022), "Predicting sorptivity and freeze-thaw resistance of self-compacting mortar by using deep learning and k-nearest neighbor", Comput. Concrete, 30(2), https://doi.org/10.12989/cac.2022.30.2.099.
  37. Van Belleghem, B., Montoya, R., Dewanckele, J., Van den Steen, N., De Graeve, I., Deconinck, J., Cnudde, V., Van Tittelboom, K. and De Belie, N. (2016), "Capillary water absorption in cracked and uncracked mortar - A comparison between experimental study and finite element analysis", Constr. Build. Mater., 110, 154-162. https://doi.org/10.1016/j.conbuildmat.2016.02.027.
  38. Van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Am. J., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
  39. Van Zijl, G.P. and Slowik, V. (2017), A Framework for Durability Design with Strain-Hardening Cement-Based Composites (SHCC): State-of-the-Art Report of the RILEM Technical Committee 240-FDS, Springer Dordrecht, Berlin, Germany.
  40. Van Zijl, G.P.A.G. and Wittmann, F.H. (2010), Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC), Springer Dordrecht, Berlin, Germany.
  41. Villagran Zaccardi, Y.A., Alderete, N.M. and De Belie, N. (2017), "Improved model for capillary absorption in cementitious materials: Progress over the fourth root of time", Cement Concrete Res., 100, 153-165. https://doi.org/10.1016/j.cemconres.2017.07.003.
  42. Villar-Cocina, E., Valencia-Morales, E., Vega-Leyva, J. and Munoz, J.A. (2005), "Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model", Comput. Concrete, 2(1), 19-30. https://doi.org/10.12989/cac.2005.2.1.019.
  43. Wagner, C., Villmann, B., Slowik, V. and Mechtcherine, V. (2019), "Capillary absorption of cracked strain-hardening cement-based composites", Cement Concrete Compos., 97, 239-247. https://doi.org/10.1016/j.cemconcomp.2018.12.017.
  44. Wang, L. and Ueda, T. (2011), "Mesoscale modeling of water penetration into concrete by capillary absorption", Ocean Eng., 38(4), 519-528. https://doi.org/10.1016/j.oceaneng.2010.12.019.
  45. Wang, P., Wittmann, F., Zhang, P., Lehmann, E. and Zhao, T. (2014), "Observation of water penetration into cracked and water repellent SHCC after imposed strain by means of neutron radiography", Restorat. Build. Monum., 20(2), 95-102. https://doi.org/10.12900/rbm14.20.2-0009.
  46. Wittmann, F., Zhang, P. and Zhao, T. (2010), Water and Chloride Penetration into Strain Hardening Cement-Based Composites Under and After Imposed Strain, Aedificatio Publishers, Dresden, Germany.
  47. Wittmann, F., Zhao, T., Tian, L., Wang, F. and Wang, L. (2009), "Aspects of durability of strain hardening cement-based composites under imposed strain", Proceedings of Advances in Cement-Based Materials, Stellenbosch, South Africa, November.
  48. Zhang, P., Wang, P., Hou, D., Liu, Z., Haist, M. and Zhao, T. (2017), "Application of neutron radiography in observing and quantifying the time-dependent moisture distributions in multi-cracked cement-based composites", Cement Concrete Compos., 78, 13-20. https://doi.org/10.1016/j.cemconcomp.2016.12.006.
  49. Zhang, P., Wittmann, F.H., Zhao, T.J., Lehmann, E.H., Tian, L. and Vontobel, P. (2010), "Observation and quantification of water penetration into strain hardening cement-based composites (SHCC) with multiple cracks by means of neutron radiography", Nucl. Instr. Method. Phys. Res. Sec. A: Accelerat. Spectrom. Detect. Assoc. Equip., 620(2-3), 414-420. https://doi.org/10.1016/j.nima.2010.04.119.
  50. Zhou, A.N. (2013), "A contact angle-dependent hysteresis model for soil-water retention behaviour", Comput. Geotech., 49, 36-42. https://doi.org/10.1016/j.compgeo.2012.10.004.