DOI QR코드

DOI QR Code

A novel framework for the construction of cryptographically secure S-boxes

  • Razi Arshad (Department of Computing, School of Electrical Engineering and Computer Sciences, National University of Sciences and Technology) ;
  • Mudassir Jalil (Department of Mathematics, Comsats University Islamabad) ;
  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2022.11.06
  • Accepted : 2023.12.21
  • Published : 2024.07.25

Abstract

In symmetric cryptography, a cryptographically secure Substitution-Box (S-Box) is a key component of a block cipher. S-Box adds a confusion layer in block ciphers that provide resistance against well-known attacks. The generation of a cryptographically secure S-Box depends upon its generation mechanism. In this paper, we propose a novel framework for the construction of cryptographically secure S-Boxes. This framework uses a combination of linear fractional transformation and permutation functions. S-Boxes security is analyzed against well-known security criteria that include nonlinearity, bijectiveness, strict avalanche and bits independence criteria, linear and differential approximation probability. The S-Boxes can be used in the encryption of any grayscale digital images. The encrypted images are analyzed against well-known image analysis criteria that include pixel changing rates, correlation, entropy, and average change of intensity. The analysis of the encrypted image shows that our image encryption scheme is secure.

Keywords

Acknowledgement

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/21994).

References

  1. Abd El-Latif, A.A., Abd-El-Atty, B., Amin, M. and Iliyasu, A.M. (2020), "Quantuminspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications", Sci. Rep., 10(1), 116. https://doi.org/10.1038/s41598-020-58636-w. 
  2. Ahmad, J. and Hwang, S.O. (2015), "Chaos-based diffusion for highly autocorrelated data in encryption algorithms", Nonlinear Dyn., 82(4), 1839-1850. https://doi.org/10.1007/s11071-015-2281-0. 
  3. Ahmad, M., Al-Solami, E., Alghamdi, A.M. and Yousaf, M.A. (2020), "Bijective S-boxes method using improved chaotic map-based heuristic search and algebraic group structures", IEEE Access, 8, 110397-110411. https://doi.org/10.1109/access.2020.3001868. 
  4. Ahmad, M., Bhatia, D. and Hassan, Y. (2015), "A novel ant colony optimization based scheme for substitution box design", Proc. Comput. Sci., 57, 572-580. https://doi.org/10.1016/j.procs.2015.07.394. 
  5. Altaleb, A., Saeed, M.S., Hussain, I. and Aslam, M. (2017), "An algorithm for the construction of substitution box for block ciphers based on projective general linear group", AIP Adv., 7, 035116. https://doi.org/10.1063/1.4978264. 
  6. Arshad, B., Siddiqui, N., Hussain, Z. and Ehatisham-ul-Haq, M. (2022), "A novel scheme for designing secure substitution boxes (S-Boxes) based on mobius group and finite field", Wireless Person. Commun., 124(4), 3527-3548. https://doi.org/10.1007/s11277-022-09524-1. 
  7. Artuger, F. (2023), "A new S-box generator algorithm based on 3D chaotic maps and whale optimization algorithm", Wireless Person. Commun., 131(2), 835-853. https://doi.org/10.1007/s11277-023-10456-7. 
  8. Artuger, F. and Ozkaynak, F. (2022), "A method for generation of substitution box based on random selection", Egypt. Informat. J., 23(1), 127-135. https://doi.org/10.1016/j.eij.2021.08.002. 
  9. Artuger, F. and Ozkaynak, F. (2022), "SBOX-CGA: Substitution box generator based on chaos and genetic algorithm", Neural Comput. Applicat., 34(22), 20203-20211. https://doi.org/10.1007/s00521-022-07589-4. 
  10. Artuger, F. and Ozkaynak, F. (2023), "A new algorithm to generate aes-like substitution boxes based on sine cosine optimization algorithm", Multimedia Tools Applicat., 83(13), 38949-38964. https://doi.org/10.1007/s11042-023-17200-0. 
  11. Artuger, F. and Ozkaynak, F. (2023), "A new post-processing approach for improvement of nonlinearity property in substitution boxes", Integr., 94, 102105. https://doi.org/10.1016/j.vlsi.2023.102105. 
  12. Barker, E. and Mouha, N (2017), "Recommendation for the triple data encryption algorithm (TDEA) block cipher", NIST Spec. Publ., 800, 67. https://doi.org/10.6028/nist.sp.800-67v1. 
  13. Belazi, A. and El-Latif, A.A.A. (2016), "A simple yet efficient S-box method based on the chaotic sine map", Optik, 130, 1438-1444. https://doi.org/10.1016/j.ijleo.2016.11.152. 
  14. Biham, E. and Shamir, A. (1991), "Differential cryptanalysis of DES-like cryptosystems", J. Cryptol., 4, 3-72. https://doi.org/10.1007/bf00630563. 
  15. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053. 
  16. Cui, J., Huang, L., Zhong, H., Chang, C. and Yang, W. (2011), "An improved AES S-Box and its performance analysis", Int. J. Innov. Comput. Inf. Control, 7(5), 2291-2302. 
  17. El-Latif, A.A.A., Abd-El-Atty, B., Mazurczyk, W., Fung, C. and Venegas-Andraca, S.E. (2020), "Secure data encryption based on quantum walks for 5G Internet of Things scenario", IEEE Trans. Netw. Service Manag., 17(1), 118131. https://doi.org/10.1109/tnsm.2020.2969863. 
  18. El-Latif, A.AA., Abd-El-Atty, B., Venegas-Andraca, S.E., Elwahsh, H., Piran, M.J., Bashir, A.K., Song, O.Y. and Mazurczyk, W. (2020), "Providing end-to-end security using quantum walks in IoT networks", IEEE Access, 8, 92687-92696. https://doi.org/10.1109/access.2020.2992820. 
  19. Farwa, S., Shah, T. and Idrees, L. (2016), "A highly nonlinear S-box based on a fractional linear transformation", SpringerPlus, 5, 1658. https://doi.org/10.1186/s40064-016-3298-7. 
  20. Gao, W., Idrees, B., Zafar, S. and Rashid, T. (2020), "Construction of nonlinear component of block cipher by the action of modular group PSL(2, Z) on projective line PL(GF(2^8))", PL(GF(2^8))", IEEE Access, 8, 136736-136749. https://doi.org/10.1109/ACCESS.2020.3010615. 
  21. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431. 
  22. Haider, M.I., Ali, A., Shah, D. and Shah T. (2021), "Block cipher's nonlinear component design by elliptic curves: An image encryption application", Multimedia Tools Applicat., 80(3), 4693-4718. https://doi.org/10.1007/s11042-020-09892-5. 
  23. Hussain, I., Anees, A., AlKhaldi, A.H., Algarni, A. and Aslam, M. (2018), "Construction of chaotic quantum magnets and matrix lorenz systems S-boxes and their applications", Chin. J. Phys., 56(4), 1609-1621. https://doi.org/10.1016/j.cjph.2018.04.013. 
  24. Hussain, I., Shah, T., Gondal, M.A., Khan, M. and Khan, W.A. (2011), "Construction of new S-box using a linear fractional transformation", World Appl. Sci. J., 14, 1779-1785. 
  25. Hussain, I., Shah, T., Mahmood, H. and Gondal, M.A. (2012), "A projective general linear group based algorithm for the construction of substitution box for block ciphers", Neural Comput. Appl., 22, 1085-1093. https://doi.org/10.1007/s00521-012-0870-0. 
  26. Idrees, B., Zafar, S., Rashid, T. and Gao, W. (2020), "Image encryption algorithm using s-box and dynamic henon bit level permutation", Multimedia Tools Applicat., 79(9-10), 6135-6162. https://doi.org/10.1007/s11042-019-08282-w. 
  27. Jamal, S., Attaullah, S., Shah, T., lKhaldi, A.H.A. and Tufail, M.N. (2019), "Construction of new substitution boxes using linear fractional transformation and enhanced chaos", Chin. J. Phys., 60, 564-572. https://doi.org/10.1016/j.cjph.2019.05.038. 
  28. Kang, M. and Wang, M. (2022), "New genetic operators for developing S-boxes with low boomerang uniformity", IEEE Access, 10, 10898-10906. https://doi.org/10.1109/ACCESS.2022.3144458. 
  29. Khan, H., Hazzazi, M.M., Jamal, S.S., Hussain, I. and Khan, M. (2023), "New color image encryption technique based on three-dimensional logistic map and Grey wolf optimization based generated substitution boxes", Multimedia Tools Applicat., 82(5), 6943-6964. https://doi.org/10.1007/s11042-022-13612-6. 
  30. Kuznetsov, A., Romeo, L., Poluyanenko, N., Kandiy, S. and Kuznetsova, K. (2022), "Optimizing hill climbing algorithm parameters for generation of cryptographically strong S-boxes", Electron., 12(10), 2338. https://doi.org/10.3390/electronics12102338. 
  31. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501. 
  32. Lambi¢, D. (2017), "A novel method of S-box design based on discrete chaotic map", Nonlinear Dyn., 87(4), 2407-2413. https://doi.org/10.1007/s11071-016-3199-x. 
  33. Lambic, D. (2020) "A new discrete-space chaotic map based on the multiplication of integer numbers and its application in S-box design", Nonlinear Dyn., 100, 699711. https://doi.org/10.1007/s11071-020-05503-y. 
  34. Liu, X., Tong, X., Wang, Z. and Zhang, M. (2022a), "A new n-dimensional conservative chaos based on generalized hamiltonian system and its' applications in image encryption", Chaos Solit. Fract., 154, 111693. https://doi.org/10.1016/j.chaos.2021.111693. 
  35. Liu, X., Tong, X., Wang, Z. and Zhang, M. (2022b), "Construction of controlled multi-scroll conservative chaotic system and its application in color image encryption", Nonlinear Dyn., 110(2), 1897-1934. https://doi.org/10.1007/s11071-022-07702-1. 
  36. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677. 
  37. Lu, Q., Zhu, C. and Deng, X. (2020), "An efficient image encryption scheme based on the LSS chaotic map and single S-box", IEEE Access, 8, 25664-25678. https://doi.org/10.1109/access.2020.2970806. 
  38. Mamadolimov, A., Isa, H. and Mohamad, M.S. (2013), "Practical bijective S-box design", Proceedings of the 5th Asian Mathematical Conference, Kuala Lumpur, Malaysia, June. 
  39. Matsui, M. (1993), "Linear cryptanalysis method for DES cipher", Workshop on the Theory and Application of of Cryptographic Techniques, Springer Berlin Heidelberg, Berlin, Heidelberg, Germany. 
  40. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185. 
  41. Mullen, G.L. and Panario, D. (2013), Handbook of Finite Fields. Discrete Mathematics and Its Applications, CRC Press, Boca Raton, FL, USA. 
  42. Naseer, Y., Shah, T., Hussain, S. and Ali, A. (2019), "Steps towards redesigning cryptosystems by a non-associative algebra of IP-loops", Wireless Person. Commun., 108, 13791392. https://doi.org/10.1007/s11277-019-06474-z. 
  43. NIST FIPS PUB 197 (2001), Announcing the Advanced Encryption Standard (AES), National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, USA. 
  44. NIST FIPS PUB 46-3 (1999), Data Encryption Standard (DES), National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, USA. 
  45. Pardo, J.L.G. (2013), Introduction to Cryptography with Maple, Springer Berlin Heidelberg, Berlin, Heidelberg, Germany.
  46. Qureshi, A. and Shah, T. (2017), "S-box on subgroup of Galois field based on linear fractional transformation", Electron. Lett., 53, 604-606. https://doi.org/10.1049/el.2017.0194. 
  47. Razaq, A., Ahmad, M., Yousaf, A., Alawida, M., Ullah, A. and Shuaib, U. (2022a), "A group theoretic construction of large number of AES-like substitution-boxes", Wireless Person. Commun., 122(3), 2057-2080. https://doi.org/10.1007/s11277-021-08981-4. 
  48. Razaq, A., Akhter, S., Yousaf, A., Shuaib, U. and Ahmad, M. (2022b), "A group theoretic construction of highly nonlinear substitution box and its applications in image encryption", Multimedia Tools Applicat., 81(3), 4163-4184. https://doi.org/10.1007/s11042-021-11635-z. 
  49. Shannon, C.E. (1945), A Mathematical Theory of Cryptography, Wiley-IEEE Press, Piscataway, NJ, USA. 
  50. Shannon, C.E. (1949), Communication Theory of GFSecrecy Systems, Wiley-IEEE Press, Piscataway, NJ, USA. 
  51. Sokolov, A.V. and Radush, V.V. (2022), "A method for synthesis of S-boxes with good avalanche characteristics of component Boolean and quaternary functions", J. Discrete Math. Sci. Cryptogr., 2022, 1-12. https://doi.org/10.1080/09720529.2021.1964727. 
  52. Ullah, A., Javeed, A. and Shah, T. (2019), "A scheme based on algebraic and chaotic structures for the construction of substitution box", Multimedia Tools Applicat., 78(22), 32467-32484. https://doi.org/10.1007/s11042-019-07957-8. 
  53. Ullah. A., Jamal, S. and Shah, T. (2018), "A novel algebraic technique for the construction of strong substitution box", Wireless Person. Commun., 99(1), 213-226. https://doi.org/10.1007/s11277-017-5054-x. 
  54. Wang, Y., Yang, L., Li, M. and Song, S. (2010), "A method for designing S-box based on chaotic neural network", 2010 Sixth International Conference on Natural Computation, Yantai, China, August. 
  55. Webster, A.F. and Tavares, S.E. (1986), "On the design of S-boxes", Conference on the Theory and Application of Cryptographic Techniques, Santa Barbara, CA, USA, August. 
  56. Zahid, A.H. and Arshad, M. (2019), "An innovative design of substitution-boxes using cubic polynomial mapping", Symmetry, 11, 437. https://doi.org/10.3390/sym11030437. 
  57. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671. 
  58. Zamli, K.Z., Din, F. and Alhadawi, H.S. (2023), "Exploring a Q-learning-based chaotic naked mole rat algorithm for S-box construction and optimization", Neural Comput. Applicat., 35(14), 10449-10471. https://doi.org/10.1007/s00521-023-08243-3. 
  59. Zamli, K.Z., Din, F., Alhadawi, H.S., Khalid, S., Alsolai, H., Nour, M.K., ... and Assam, M. (2022), "Exploiting an elitist barnacles mating optimizer implementation for substitution box optimization", ICT Exp., 9(4), 619-627. https://doi.org/10.1016/j.icte.2022.11.005. 
  60. Zhang, Y.Q., Hao, J.L. and Wang, X.Y. (2020), "An efficient image encryption scheme based on S-boxes and fractional-order differential logistic map", IEEE Access, 8, 54175-54188. https://doi.org/10.1109/access.2020.2979827.