DOI QR코드

DOI QR Code

Fractional order optimal control for biological model

  • Received : 2022.12.10
  • Accepted : 2023.12.20
  • Published : 2024.07.25

Abstract

In this research, we considered fractional order optimal control models for cancer, HIV treatment and glucose.These models are based on fractional order differential equations that describe the dynamics underlying the disease.It is formulated in term of left and right Caputo fractional derivative. Pontryagin's Maximum Principle is used as a necessary condition to find the optimal curve for the respective controls over fixed time period. The formulated problems are numerically solved using forward backward sweep method with generalized Euler scheme.

Keywords

Acknowledgement

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/21994).

References

  1. Ackerman, E., Rosevar, J.W. and Molnar, G. (1969), "Concepts and models of biomathematics", Blood Glucose Regulation and Diabetes, Marcel Dekker, New York City, NY, USA.
  2. Bai, X., He, Y. and Xu, M. (2021), "Low-thrust reconfiguration strategy and optimization for formation flying using jordan normal form", IEEE Transac. Aerosp. Electron. Syst., 57(5), 3279-3295. https://doi.org/10.1109/TAES.2021.3074204
  3. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  4. Caputo, M. (1967), "Linear models of dissipation whose Q is almost frequency independent-II", Geophys. J. Int., 13(5), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.
  5. Clarke, F.H. (1990), "Optimization and non-smooth analysis", Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA.
  6. Guo, C., Hu, J., Hao, J., Celikovsky, S. and Hu, X. (2023a), "Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions", Kybernetika, 59(3), 342-364. https://doi.org/10.14736/kyb-2023-3-0342.
  7. Guo, C., Hu, J., Wu, Y. and Celikovsky, S. (2023b), "Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints", IEEE Transac. Circuit. Syst. I: Regular Papers, 70(9), 3746-3758. https://doi.org/10.1109/TCSI.2023.3291700.
  8. Hanif, L. (2018), "Application of optimal control strategies to HIV-malaria co-infection dynamics", J. Phys.: Conf. Ser., 974(1), 012057. https://doi.org/10.1088/1742-6596/974/1/012057.
  9. He, L., Valocchi, A.J. and Duarte, C.A. (2023), "A transient global-local generalized FEM for parabolic and hyperbolic PDEs with multi-space/time scales", J. Comput. Phys., 488, 112179. https://doi.org/10.1016/j.jcp.2023.112179.
  10. Huang, H., Shu, J. and Liang, Y. (2024), "MUMA: A multi-omics meta-learning algorithm for data interpretation and classification", IEEE J. Biomed. Health Informat., 28(4), 2428-2436. https://doi.org/10.1109/JBHI.2024.3363081.
  11. Huang, H., Wu, N., Liang, Y., Peng, X. and Shu, J. (2022), "SLNL: A novel method for gene selection and phenotype classification", Int. J. Intell. Syst., 37(9), 6283-6304. https://doi.org/10.1002/int.22844.
  12. Kheiri, H. and Jafari, M. (2018), "Optimal control of a fractional-order model for the HIV/AIDS epidemic", Int. J. Biomath., 11(7), 1850086. https://doi.org/10.1142/S1793524518500869.
  13. Kirschner, D. and Webb, G.F. (1996), "A model for treatment strategy in the chemotherapy of AIDS", Bull. Math. Biol., 58(2), 367-390. https://doi.org/10.1016/0092-8240(95)00345-2.
  14. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  15. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2020), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 22(1), 3-27. https://doi.org/10.1177/1099636217731.
  16. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  17. Lenhart, S. and Workman, J.T. (2007), "Optimal control applied to biological models", CRC Press, Boca Raton, FL, USA.
  18. Liu, W., Bai, X., Yang, H., Bao, R. and Liu, J. (2024), "Tendon driven bistable origami flexible gripper for high-speed adaptive grasping", IEEE Robot. Automat. Lett., 9(6), 5417-5424. https://doi.org/10.1109/LRA.2024.3389413.
  19. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
  20. Luo, R., Peng, Z., Hu, J. and Ghosh, B.K. (2023), "Adaptive optimal control of affine nonlinear systems via identifier-critic neural network approximation with relaxed PE conditions", Neural Netw., 167, 588-600. https://doi.org/10.1016/j.neunet.2023.08.044.
  21. Mohammadzadeh, A., Taghavifar, H., Zhang, C., Alattas, K.A., Liu, J., ... and Vu, M.T. (2024), "A non-linear fractional-order type-3 fuzzy control for enhanced path-tracking performance of autonomous cars", IET Control Theory Applicat., 18(1), 40-54. https://doi.org/10.1049/cth2.12538.
  22. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  23. Omame, A. and Abbas, M. (2023a), "Modeling SARS-CoV-2 and HBV co-dynamics with optimal control", Phys. A: Stat. Mech. Applicat., 615, 128607. https://doi.org/10.1016/j.physa.2023.128607.
  24. Omame, A. and Abbas, M. (2023b), "The stability analysis of a co-circulation model for COVID-19, dengue, and zika with nonlinear incidence rates and vaccination strategies", Healthcare Anal., 3, 100151. https://doi.org/10.1016/j.health.2023.100151.
  25. Omame, A., Abbas, M. and Onyenegecha, C.P. (2022), "Backward bifurcation and optimal control in a co-infection model for SARS-CoV-2 and ZIKV", Results Phys., 37, 105481. https://doi.org/10.1016/j.rinp.2022.105481.
  26. Omame, A., Raezah, A.A., Diala, U.H. and Onuoha, C. (2023c), "The optimal strategies to be adopted in controlling the co-circulation of COVID-19, Dengue and HIV: Insight from a mathematical model", Axioms, 12(8), 773. https://doi.org/10.3390/axioms12080773.
  27. Pacini, G. and Bergman, R.N. (1986), "MINMOD: A computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test", Computer Methods Programs Biomed., 23(2), 113-122. https://doi.org/10.1016/0169-2607(86)90106-9.
  28. Swan, G.W. (1984), Applications of Optimal Control Theory in Biomedicine, M. Dekker, New York, NY, USA.
  29. Unni, P. and Seshaiyer, P. (2019), "Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions", Comput. Math. Methods Med., 2019(1), 4079298. https://doi.org/10.1155/2019/4079298.
  30. Wang, Q., Li, P., Rocca, P., Li, R., Tan, G., Hu, N., ... and Xu, W. (2023), "Interval-based tolerance analysis method for petal reflector antenna with random surface and deployment errors", IEEE Transac. Anten. Propagat., 71(11), 8556-8569. https://doi.org/10.1109/TAP.2023.331409.
  31. Wang, X., Zhang, R., Miao, Y., An, M., Wang, S., ... and Zhang, Y. (2024), "PI2-based adaptive impedance control for gait adaption of lower limb exoskeleton", IEEE/ASME Transac. Mechatron., 2024, 1-11. https://doi.org/10.1109/TMECH.2024.3370954.
  32. Wodarz, D. and Nowak, M.A. (2002), "Mathematical models of HIV pathogenesis and treatment", BioEssays, 24(12), 1178-1187. https://doi.org/10.1002/bies.10196.
  33. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  34. Zhang, C., Zhou, L. and Li, Y. (2024b), "Pareto optimal reconfiguration planning and distributed parallel motion control of mobile modular robots", IEEE Transac. Indust. Electron., 71(8), 9255-9264. https://doi.org/10.1109/TIE.2023.3321997.
  35. Zhang, J., Zhu, D., Jian, W., Hu, W., Peng, G., Chen, Y., ... and Wang, Z. (2024a), "Fractional order complementary non-singular terminal sliding mode control of PMSM based on neural network", Int. J. Automot. Technol., 25(2), 213-224. https://doi.org/10.1007/s12239-024-00015-9.
  36. Zhang, Y., Li, S., Wang, S., Wang, X. and Duan, H. (2023), "Distributed bearing-based formation maneuver control of fixed-wing UAVs by finite-time orientation estimation", Aerosp. Sci. Technol., 136, 108241. https://doi.org/10.1016/j.ast.2023.108241.