DOI QR코드

DOI QR Code

Prediction of modulus of elasticity of FA concrete using crushing strength, UPV and RHN values

  • Mohd A. Ansari (Department of Civil Engineering, Z.H. College of Engineering & Technology, Aligarh Muslim University) ;
  • M. Shariq (Department of Civil Engineering, Z.H. College of Engineering & Technology, Aligarh Muslim University) ;
  • F. Mahdi (Department of Civil Engineering, Z.H. College of Engineering & Technology, Aligarh Muslim University) ;
  • Saad S. Ansari (Department of Civil Engineering, Z.H. College of Engineering & Technology, Aligarh Muslim University)
  • 투고 : 2021.12.27
  • 심사 : 2023.12.04
  • 발행 : 2024.07.25

초록

This paper presents the detailed experimental and analytical investigation on the evolution of static (Es) and dynamic modulus of elasticity (Ed) of concrete having 0%, 35%, and 50% FA used as partial cement replacement. Destructive and non-destructive tests were conducted on cylindrical specimens to evaluate the compressive strength and MoE of concrete in compression at the age of 28, 56, 90, and 150 days for all mixes. Experimental results show that the concrete having 35% FA achieved compressive strength and MoE similar to plain concrete at the age of 90 days, while 50% FA concrete attained satisfactory compressive strength and MoE at the age of 150 days. The comprehensive statistical analysis has been carried out in two ways on the basis of the experimental results. Firstly, the 28-day crushing strength of plain concrete in compression was used to design the models for the prediction of Es and Ed of fly ash concrete at any age and percentage replacement of FA. Secondly, using the values of UPV and RHN, models have been developed to predict the age or time-dependent Es and Ed of fly ash concrete. These models will be helpful in assessing the Es and Ed of fly ash concrete without knowing the 28-day crushing strength of plain concrete in compression in the laboratory. Hence, the suggested models in the present study will be beneficial in conducting the health assessment of fly ash based concrete structures.

키워드

참고문헌

  1. ACI 209 (1999), Prediction of Creep and Shrinkage, and Temperature Effects in Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA.
  2. Alkroosh, I.S. and Sarker, P.K. (2019), "Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming", Comput. Concrete, 24(4), 295-302. https://doi.org/10.12989/cac.2019.24.4.295.
  3. ASTM C469 (2002), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
  4. ASTM C494 (1999), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, USA.
  5. Bazant, Z.P. and Baweja, S. (1996), "Short form of creep and shrinkage prediction model B3 for structures of medium sensitivity", Mater. Struct., 29(10), 587-593. https://doi.org/10.1007/BF02485965.
  6. Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.
  7. Bouzoubaa, N., Zhang, M.H. and Malhotra, V.M. (2001), "Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash", Cement Concrete Res., 31(10), 1393-1402. https://doi.org/10.1016/S0008-8846(01)00592-0.
  8. BS 8110 (1986), Structural Use of Concrete: Code of Practice for Design and Construction, British Standards Part 1, The British Standards Institution, London, UK.
  9. CEB-FIB Model Code (2010), FIB Bulletin 55, Vol. 1, CEB-FIB, Lausanne, Switzerland.
  10. de Araujo Thomaz, W., Miyaji, D.Y. and Possan, E. (2021), "Comparative study of dynamic and static Young's modulus of concrete containing basaltic aggregates", Case Stud. Constr. Mater., 15, e00645. https://doi.org/10.1016/j.cscm.2021.e00645.
  11. Dong, C.X., Kwan, A.K. and Ho, J.C. (2015), "A constitutive model for predicting the lateral strain of confined concrete", Eng. Struct., 91, 155-166. https://doi.org/10.1016/j.engstruct.2015.02.014.
  12. Dong, C.X., Kwan, A.K. and Ho, J.C. (2017), "Effects of external confinement on structural performance of concrete-filled steel tubes", J. Constr. Steel Res., 132, 72-82. https://doi.org/10.1016/j.jcsr.2016.12.024.
  13. Duran-Herrera, A., Juarez, C.A., Valdez, P. and Bentz, D.P. (2011), "Evaluation of sustainable high-volume fly ash concretes", Cement Concrete Compos., 33(1), 39-45. https://doi.org/10.1016/j.cemconcomp.2010.09.020.
  14. Emiroglu, M., Yildiz, S. and Kelestemur, M.H. (2015), "A study on dynamic modulus of self-consolidating rubberized concrete", Comput. Concrete, 15(5), 795-805. https://doi.org/10.12989/cac.2015.15.5.795.
  15. Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal-strength concrete", J. Mater., 98(2), 159-167.
  16. Han, S.H., Kim, J.K. and Park, Y.D. (2003), "Prediction of compressive strength of fly ash concrete by new apparent activation energy function", Cement Concrete Res., 33(7), 965-971. https://doi.org/10.1016/S0008-8846(03)00007-3.
  17. Hasanbeigi, A., Morrow, W., Masanet, E., Sathaye, J. and Xu, T. (2013), "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China", Energ. Policy, 57, 287-297. https://doi.org/10.1016/j.enpol.2013.01.053.
  18. Hasanbeigi, A., Price, L. and Lin, E. (2012), "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review", Renew. Sustainab. Energ. Rev., 16(8), 6220-6238. https://doi.org/10.1016/j.rser.2012.07.019.
  19. Hashmi, A.F., Shariq, M. and Baqi, A. (2021), "An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction", Constr. Build. Mater., 283, 122772. https://doi.org/10.1016/j.conbuildmat.2021.122772.
  20. Huang, C.H., Lin, S.K., Chang, C.S. and Chen, H.J. (2013), "Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash", Constr. Build. Mater., 46, 71-78. https://doi.org/10.1016/j.conbuildmat.2013.04.016.
  21. IS 10262 (2009), Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, India.
  22. IS 13311 Part-I (1992), Non-Destructive Testing of Concrete - Ultrasonic Pulse Velocity, Bureau of Indian Standards, New Delhi, India. 
  23. IS 13311 Part-II (1992), Non-Destructive Testing of Concrete - Rebound Hammer, Bureau of Indian Standards, New Delhi, India.
  24. IS 2386 Part-I (1997), Methods of Tests for Aggregates for Concrete-Particle Size and Shape, Bureau of Indian Standards, New Delhi, India.
  25. IS 2386 Part-III (1997), Methods of Tests for Aggregates for Concrete-Specific Gravity, Density, Voids, Absorption and Bulking, Bureau of Indian Standards, New Delhi, India.
  26. IS 3812 Part I (2003), Pulverized Fuel Ash - Specification Part 1 for Use as Pozzolana in Cement, Bureau of Indian Standards, New Delhi, India.
  27. IS 383 (2016), Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India.
  28. IS 4031 Part-IV (1988), Methods of Physical Tests for Hydraulic Cement-Determination of Consistency of Standard Cement Paste, Bureau of Indian Standards, New Delhi, India.
  29. IS 4031 Part-V (1988), Methods of Physical Tests for Hydraulic Cement-Determination of Initial and Final Setting Times, Bureau of Indian Standards, New Delhi, India.
  30. IS 4031 Part-VI (1988), Methods of Physical Tests for Hydraulic Cement-Determination of Compressive Strength of Hydraulic Cement Other than Masonry Cement, Bureau of Indian Standards, New Delhi, India.
  31. IS 456 (2000), Plain and Reinforced Concrete- Code of Practice, Bureau of Indian Standards, New Delhi, India.
  32. IS 516 (2004), Methods of tests for strength of concrete, Bureau of Indian Standard, New Delhi, India.
  33. IS 516 Part-V (2018), Hardened Concrete - Methods of Tests, Non-Destructive Testing of Concrete - Ultrasonic Pulse Velocity Testing, Bureau of Indian Standards, New Delhi, India.
  34. IS 8112 (2013), Indian Standard 43 Grade Ordinary Portland Cement-Specification, Bureau of Indian Standards, New Delhi, India.
  35. IS 9103 (1999), Concrete Admixtures-Specifications, Bureau of Indian Standards, New Delhi, India
  36. Kar, A., Halabe, U.B., Ray, I. and Unnikrishnan, A. (2013), "Non-destructive characterizations of alkali activated fly ash and/or slag concrete", Eur. Sci. J., 9(24).
  37. Kayali, O. and Ahmed, M.S. (2013), "Assessment of high-volume replacement fly ash concrete-Concept of performance index", Constr. Build. Mater., 39, 71-76. https://doi.org/10.1016/j.conbuildmat.2012.05.009.
  38. Kwan, A.K., Dong, C.X. and Ho, J.C. (2015), "Axial and lateral stress-strain model for FRP confined concrete", Eng. Struct., 99, 285-295. https://doi.org/10.1016/j.engstruct.2015.04.046.
  39. Kwan, A.K., Dong, C.X. and Ho, J.C. (2016), "Axial and lateral stress-strain model for circular concrete-filled steel tubes with external steel confinement", Eng. Struct., 117, 528-541. https://doi.org/10.1016/j.engstruct.2016.03.026.
  40. Lai, M., Hanzic, L. and Ho, J.C. (2019), "Fillers to improve passing ability of concrete", Struct. Concrete, 20(1), 185-197. https://doi.org/10.1002/suco.201800047.
  41. Lai, M.H., Binhowimal, S.A., Griffith, A.M., Hanzic, L., Chen, Z., Wang, Q. and Ho, J.C., (2022), "Shrinkage, cementitious paste volume, and wet packing density of concrete", Struct. Concrete, 23(1), 488-504. https://doi.org/10.1002/suco.202000407.
  42. Lai, M.H., Binhowimal, S.A., Griffith, A.M., Hanzic, L., Wang, Q., Chen, Z. and Ho, J.C. (2021), "Shrinkage design model of concrete incorporating wet packing density", Constr. Build. Mater., 280, 122448. https://doi.org/10.1016/j.conbuildmat.2021.122448.
  43. Lingam, A. and Karthikeyan, J. (2014), "Prediction of compressive strength for HPC mixes containing different blends using ANN", Comput. Concrete, 13(5), 621-632. https://doi.org/10.12989/cac.2014.13.5.621.
  44. Malhotra, V.M. (2010), "Global warming, and role of supplementary cementing materials and superplasticisers in reducing greenhouse gas emissions from the manufacturing of Portland cement", Int. J. Struct. Eng., 1(2), 116-130. https://doi.org/10.1504/IJStructE.2010.03148.
  45. Mehta, P.K. and Monteiro, P. (2014), Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, New York, NY, USA.
  46. Ni, H.G. and Wang, J.Z. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(8), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8.
  47. Pal, S., Shariq, M., Abbas, H., Pandit, A.K. and Masood, A. (2020), "Strength characteristics and microstructure of hooked-end steel fiber reinforced concrete containing fly ash, bottom ash and their combination", Constr. Build. Mater., 247, 118530. https://doi.org/10.1016/j.conbuildmat.2020.118530.
  48. Papadakis, V.G. and Demis, S. (2013), "Predictive modeling of concrete compressive strength based on cement strength class", Comput. Concrete, 11(6), 587-602. http://dx.doi.org/10.12989/cac.2013.11.6.587.
  49. Rao, S.K., Sravana, P. and Rao, T.C. (2016), "Experimental studies in ultrasonic pulse velocity of roller compacted concrete pavement containing fly ash and M-sand", Int. J. Pavement Res. Technol., 9(4), 289-301. https://doi.org/10.1016/j.ijprt.2016.08.003.
  50. Sata, V., Khammathit, P. and Chindaprasirt, P. (2011), "Efficiency factor of high calcium Class F fly ash in concrete", Comput. Concrete, 8(5), 583-595. https://doi.org/10.12989/cac.2011.8.5.583.
  51. Shariq, M., Prasad, J. and Abbas, H. (2013a), "Effect of GGBFS on age dependent static modulus of elasticity of concrete", Constr. Build. Mater., 41, 411-418. https://doi.org/10.1016/j.conbuildmat.2012.12.035.
  52. Shariq, M., Prasad, J. and Masood, A. (2013b), "Studies in ultrasonic pulse velocity of concrete containing GGBFS", Constr. Build. Mater., 40, 944-950. https://doi.org/10.1016/j.conbuildmat.2012.11.070.
  53. Siddique, R. (2004), "Performance characteristics of high-volume Class F fly ash concrete", Cement Concrete Res., 34(3), 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002.
  54. Sivasundaram, V., Carette, G.G. and Malhotra, V.M. (1990), "Long-term strength development of high-volume fly ash concrete", Cement Concrete Compos., 12(4), 263-270. https://doi.org/10.1016/0958-9465(90)90005-I.
  55. Wei, X., Zhu, H., Li, G., Zhang, C. and Xiao, L. (2007), "Properties of high volume fly ash concrete compensated by metakaolin or silica fume", J. Wuhan Univ. Technol. Mater. Sci. Ed., 22(4), 728-732. https://doi.org/10.1007/s11595-006-4728-0.
  56. Wong, H.H. and Kwan, A.K. (2008), "Packing density of cementitious materials: Part 1-Measurement using a wet packing method", Mater. Struct., 41, 689-701. https://doi.org/10.1617/s11527-007-9274-5.
  57. Yildirim, H. and Sengul, O. (2011), "Modulus of elasticity of substandard and normal concretes", Constr. Build. Mater., 25(4), 1645-1652. https://doi.org/10.1016/j.conbuildmat.2010.10.009.
  58. Yoo, S.W., Choi, Y.C. and Choi, W. (2017), "Compression behavior of confined columns with high-volume fly ash concrete", Adv. Mater. Sci. Eng., 2017(1), 8208079. https://doi.org/10.1155/2017/8208079.
  59. Yoon, S., Monteiro, P.J., Macphee, D.E., Glasser, F.P. and Imbabi, M.S.E. (2014), "Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes", Constr. Build. Mater., 54, 432-442. https://doi.org/10.1016/j.conbuildmat.2013.12.077.
  60. Yoshitake, I., Wong, H., Ishida, T. and Nassif, A.Y. (2014), "Thermal stress of high-volume fly-ash (HVFA) concrete made with limestone aggregate", Constr. Build. Mater., 71, 216-225. https://doi.org/10.1016/j.conbuildmat.2014.08.028.
  61. Zezulova, E. (2017), "The dynamic modulus of elasticity as an important parameter for military use of constructions", Durability of Critical Infrastructure, Monitoring and Testing: Proceedings of the ICDCF 2016, Satov, Czech Republic, December.