DOI QR코드

DOI QR Code

Optimization of a Savonius hydrokinetic turbine for performance improvement: A comprehensive analysis of immersion depth and rotation direction

  • Mafira Ayu Ramdhani (Department of Ocean System Engineering, Jeju National University) ;
  • Il Hyoung Cho (Department of Ocean System Engineering, Jeju National University)
  • 투고 : 2024.02.12
  • 심사 : 2024.04.12
  • 발행 : 2024.06.25

초록

The turbine system converts the kinetic energy of water flow to electricity by rotating the rotor in a restricted waterway between the seabed and free surface. A turbine system's immersion depth and rotation direction are significantly critical in the turbine's performance along with the shape of the rotor. This study has investigated the hydrodynamic performance of the Savonius hydrokinetic turbine (SHT) according to the immersion depth and rotation direction using computational fluid dynamics (CFD) simulations. The instantaneous torque, torque coefficient, and power coefficients are calculated for the immersion ratios Z/D ranging [0.25, 3.0] and both clockwise (CW) and counterclockwise (CCW) rotations. A flow visualization around the rotor is shown to clarify the correlation between the turbine's performance and the flow field. The CFD simulations show that the CCW rotation produces a higher power at shallow immersion, while the CW rotation performs better at deeper immersion. The immersion ratio should be greater than the minimum of Z/D=1.0 to obtain the maximum power production regardless of the rotation direction.

키워드

과제정보

The researcher uses this opportunity to express our appreciation to NIIED (National Institute for International Education) sponsored by Korean Ministry of Education.

참고문헌

  1. Ahmed, Y., Hassanzadeh, R., Yaakob, O. and Ismail, M. (2013), "Comparison of conventional and helical Savonius marine current turbine using computational fluid dynamics", World Appl. Sci. J., 28, 1113-1119.
  2. Akwa, J.V., Vielmo, H.A. and Petry, A.P. (2012), "A review on the performance of Savonius wind turbines", Renew. Sust. Energ. Rev., 16(5), 3054-3064. https://doi.org/10.1016/j.rser.2012.02.056.
  3. Almohammadi, K.M., Ingham, D.B. and Ma, L. (2012), "Pourkashanian M. CFD sensitivity analysis of a straight-blade vertical axis wind turbine", Wind Eng., 36(5), 571-588. https://doi.org/10.1260/0309-524X.36.5.
  4. Almohammadi, K.M., Ingham, D.B., Ma, L. and Pourkashan, M. (2013), "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine", Energy, 58, 483-493. https://doi.org/10.1016/j.energy.2013.06.012.
  5. Bahaj, A.S. (2013), "Marine current energy conversion: The dawn of a new era in electricity production", Philos. T. R. Soc. A., 371, 20120500. https://doi.org/10.1098/rsta.2012.0500.
  6. Birjandi, A.H., Bibeau, E.L., Chatoorgoon, V. and Kumar, A. (2013), "Power measurement of hydrokinetic turbines with free-surface and blockage effect", Ocean Eng., 69, 9-17. https://doi.org/10.1016/j.oceaneng.2013.05.023. 
  7. Boissonnat, J.D., Cohen-Steiner, D., Mourrain, B., Rote, G. and Vegter, G. (2006), "Meshing of Surfaces". In: Boissonnat, J.D. and Teillaud, M. (Eds), Effective computational geometry for curves and surfaces. Springer, Berlin, Heidelberg.
  8. Chemengich, S.J., Kassab, S.Z. and Lotfy, E.R. (2022), "Effect of the variations of the gap flow guides geometry on the savonius wind turbine performance: 2D and 3D studies", J. Wind Eng. Ind. Aerod., 222, 104920. https://doi.org/10.1016/j.jweia.2022.104920.
  9. Guney, M.S. and Kaygusuz, K. (2010), "Hydrokinetic energy conversion systems: A technology status review", Renew. Sust. Energ. Rev., 14(9), 2996-3004. https://doi.org/10.1016/j.rser.2010.06.016.
  10. Hirt, C.W. and Nichols, B.D. (1981), "Volume of Fluid (VOF) method for the dynamics of free boundaries", J. Comput. Phys., 39(1), 201. https://doi.org/10.1016/0021-9991(81)90145-5.
  11. Ito, Y. and Nakahashi, K. (2004), "Improvements in the reliability and quality of unstructured hybrid mesh generation", Int. J. Numer. Meth. Fl., 45(1), 79-108. https://doi.org/10.1002/fld.669.
  12. Kerikous, E. and Thevenin, D. (2019), "Performance enhancement of a hydraulic Savonius turbine by optimizing overlap and gap ratios", Proceedings of the ASME 2019 Gas Turbine India Conference, Chennai, India.
  13. Mejia, O.D.L., Mejia, O.E., Escorcia, K.M., Suarez, F. and Lain, S. (2021), "Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications", Processes, 9(11), 1933. https://doi.org/10.3390/pr9111933.
  14. Maldar, N.R., Ng, C.Y. and Oguz, E. (2020), "A review of the optimization studies for Savonius turbine considering hydrokinetic applications", Energ. Convers. Management, 226, 113495. https://doi.org/10.1016/j.enconman.2020.113495.
  15. Myers, L. and Bahaj, A.S. (2007), "Wake studies of a 1/30th scale horizontal axis marine current turbine", Ocean Eng., 34(5-6), 758-762. https://doi.org/10.1016/j.oceaneng.2006.04.013.
  16. Nakajima, M., Iio, S. and Ikeda, T. (2008), "Performance of Savonius rotor for environmentally friendly hydraulic turbine", J. Fluid Sci. Tech., 3, 420-429. https://doi.org/10.1299/jfst.3.420.
  17. Ramdhani, M.A., George, A. and Cho, I.H. (2024), "Influence of separation gap on the performance of Savonius hydrokinetic turbine", Intel. Sustain. Manufact., 1(1), 10005. https://doi.org/10.35534/ism.2024.10005.
  18. Roy, S. and Saha, U.K., (2013), "Review on the numerical investigations into the design and development of Savonius wind rotors", Renew. Sust. Energ. Rev., 24, 73-83. https://doi.org/10.1016/j.rser.2013.03.060.
  19. Satrio, D., Utama, I.K. and Mukhtasor, M., (2018), "The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine", J. Mech. Eng. Sci., 12(1), 3399-3409. https://doi.org/10.15282/jmes.12.1.2018.9.0303.
  20. Savonius, S.J. (1931), "The S-rotor and its applications", Mech. Eng., 53, 333-338.
  21. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995), "A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows", Comput. Fluids, 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T.
  22. Sobczak, K. (2018), "Numerical investigations of an influence of the aspect ratio on the Savonius rotor performance", J. Phys.: Conf. Ser., 1101, 012034. https://doi.org/10.1088/1742-6596/1101/1/012034.
  23. Thiyagaraj, J., Rahamathullah, I., Anbuchezhiyan, G., Barathiraja, R. and Ponshanmugakumar, A. (2021), "Influence of blade numbers, overlap ratio and modified blades on performance characteristics of the savonius hydro-kinetic turbine", Materials Today: Proceedings, 46(9), 4047-4053. https://doi.org/10.1016/j.matpr.2021.02.568.
  24. Tu, J., Yeoh, G.H. and Liu, C. (2008), "Computational fluid dynamics-a practical approach", Butterworth-Heinemann: Oxford, UK.
  25. UniAET (2020), "Simcenter STAR-CCM+ Basic Training", Siemens: Munich, Germany.
  26. Ushiyama, I. and Nagai, H. (1988), "Optimum design configurations and performance of Savonius rotors", Wind Eng., 12(1), 59-75.
  27. Whelan, J.I., Graham, J.M.R. and Perio, J. (2009), "A free-surface and blockage correction for tidal turbines", J. Fluid Mech., 624, 281-291. https://doi.org/10.1017/S0022112009005916. 
  28. Zhang, B., Li, B., Li, C., Zhang, Y., Lv, J. and Yu, H. (2024), "Effects of submergence depth on the performance of the Savonius hydrokinetic turbine near a free surface", Energy, 289, 129899. https://doi.org/10.1016/j.energy.2023.129899
  29. Zilic de Arcos, F., Tampier, G., and Vogel, C.R. (2020), "Numerical analysis of blockage correction methods for tidal turbines", J. Ocean Eng. Mar. Energy, 6, 183-197. https://doi.org/10.1007/s40722-020-00168-6.