Acknowledgement
This work was supported by a Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure, and Transport (Grant RS-2023-00250727) through the Korea Floating Infrastructure Research Center at Seoul National University.
References
- Al Atik, L. and Abrahamson, N. (2010), "An improved method for nonstationary spectral matching", Earthq. Spectra, 26(3), 601-617. https://doi.org/10.1193/1.34591.
- Cheng, Z., Gao, Z. and Moan, T. (2018a), "Hydrodynamic load modeling and analysis of a floating bridge in homogeneous wave conditions", Mar. Struct., 59, 122-141. https://doi.org/10.1016/j.marstruc.2018.01.007.
- Cheng, Z., Gao, Z. and Moan, T. (2018b), "Wave load effect analysis of a floating bridge in a fjord considering inhomogeneous wave conditions", Eng. Struct., 163, 197-214. https://doi.org/10.1016/j.engstruct.2018.02.066.
- Cheng, Z., Gao, Z. and Moan, T. (2019), "Numerical modeling and dynamic analysis of a floating bridge subjected to wind, wave, and current loads", J. Offshore Mech. Arct. Eng., 141, 011601. https://doi.org/10.1115/1.4040561.
- Cheng, Z., Gao, Z. and Moan, T. (2020), "Extreme responses and associated uncertainties for a long end-anchored floating bridge", Eng. Struct., 219, 110858. https://doi.org/10.1016/j.engstruct.2020.110858.
- Dai, J., Leira, B.J., Moan, T. and Kvittem, M.I. (2020), "Inhomogeneous wave load effects on a long, straight and side-anchored floating pontoon bridge", Mar. Struct., 72, 102763. https://doi.org/10.1016/j.marstruc.2020.102763.
- Jang, M., Lee. Y., Won, D., Kang, Y.J. and Kim, S. (2020a), "Static behaviors of a long-span cable-stayed bridge with a floating tower under dead loads", J. Mar. Sci. Eng., 8(10), 816. https://doi.org/10.3390/jmse8100816.
- Jang, M., Lee, Y., Kim, S. and Kang, Y.J. (2020b), "Dynamic behavior of a long-span cable-stayed bridge with floating towers after the sudden failure of tethers and cables under irregular waves", J. Mar. Sci. Technol., 28(6), 593-601. https://doi.org/10.6119/JMST.202012_28(6).0014.
- Jin, C. and Kim, M.H. (2018), "Time-domain hydro-elastic analysis of a SFT (submerged floating tunnel) with mooring lines under extreme wave and seismic excitations", Appl. Sci., 8(12), 2386. https://doi.org/10.3390/app8122386.
- Jin, C., Kim, M., Chung, W.C. and Kwon, D.S. (2020), "Time-domain coupled analysis of curved floating bridge under wind and wave excitations", Ocean Syst. Eng., 10(4), 399-414. https://doi.org/10.12989/ose.2020.10.4.399.
- Jin, C., Kim, S., Chung, W.C., Kang, B. and Kim, S. (2024), "Feasibility investigation of tuned mass damper for vibration control of curved floating bridge in winds and waves", Appl. Ocean Res., 148, 104013. https://doi.org/10.1016/j.apor.2024.104013.
- Multiconsult (2017), SBJ-31-C3-MUL-22-RE-100-0 - analysis and design (base case). Oslo, Norway: Multiconsult AS.
- Multiconsult (2018), SBJ-01-C4-SVV-01-BA-001 - MetOcean Design basis. Oslo, Norway: Multiconsult AS.
- Orcina (2024), OrcaFlex Manual (https://www.orcina.com/webhelp/OrcaFlex/).
- Rodrigues, J.M., Viuff, T. and O kland, O.D. (2022), "Model tests of a hydroelastic truncated floating bridge", Appl. Ocean Res., 125, 103247. https://doi.org/10.1016/j.apor.2022.103247.
- Viuff, T., Xiang, X., Leira, B.J. and Oiseth, O. (2020a), "Software-to-software comparison of end-anchored floating bridge global analysis", J. Bridge Eng., 25(5), 04020022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001545.
- Viuff, T., Xiang, X., O iseth, O. and Leira, B.J. (2020b), "Model uncertainty assessment for wave- and current-induced global response of a curved floating pontoon bridge", Appl. Ocean Res., 105, 102368. https://doi.org/10.1016/j.apor.2020.102368.
- Viuff, T., Ravinthrakumar, S., O kland, O.D., Gryta, O.A. and Xiang, X. (2023), "Model test of a hydroelastic truncated floating bridge with a stay-cable tower", Appl. Ocean Res., 135, 103539. https://doi.org/10.1016/j.apor.2023.103539.
- Won, D., Lee, K., Kang, Y.J. and Kim, S. (2020), "Short-term fatigue damage of tethers of long-span floating cable supported bridges under harsh waves", J. Mar. Sci. Technol., 28(6), 602-609. https://doi.org/10.6119/JMST.202012_28(6).0015.
- Xiang, S., Cheng, B., Li, D., Tang, M. and Zeng, Z. (2023), "Structural dynamic performance of floating continuous beam bridge under wave and current loadings: An experimental study", Appl. Ocean Res., 137, 103604. https://doi.org/10.1016/j.apor.2023.103604.
- Yadi, S., Suhendro, B., Priyosulistyo, H. and Aminullah, A. (2018), "Shake table test of floating cable-stayed bridge under earthquake excitation during construction with balanced cantilever method", Int. J. Civ. Eng. Technol., 9, 2063-2081.
- Yan, J., Liu, J., Liu, Z., Li, H. and Guo, A. (2023), "Experimental study on the dynamic responses of the end-anchored floating bridge subjected to joint actions of earthquakes and water waves", Earthq. Eng. Struct. D., 52(10), 2945-2965. https://doi.org/10.1002/eqe.3904.
- Yan, J., Liu, J., Liu, Z. and Guo, A. (2024a), "Experimental study on the effects of hydrodynamic loads on the seismic response of end-anchored floating bridges", Ocean Eng., 300, 117464. https://doi.org/10.1016/j.oceaneng.2024.117464.
- Yan, J., Liu, J., Liu, Z. and Guo, A. (2024b), "Time domain simulation of a floating bridge subject to the joint actions of an earthquake and wave actions", Ocean Eng., 295, 116992. https://doi.org/10.1016/j.oceaneng.2024.116992.