DOI QR코드

DOI QR Code

Prediction of Agricultural Wind and Gust Using Local Ensemble Prediction System

국지앙상블시스템을 활용한 농경지 바람 및 강풍 예측

  • Jung Hyuk Kang (National Institute of Meteorological Sciences) ;
  • Geon-Hu Kim (National Institute of Meteorological Sciences) ;
  • Kyu Rang Kim (National Institute of Meteorological Sciences)
  • 강정혁 (국립기상과학원 기상응용연구부) ;
  • 김건후 (국립기상과학원 기상응용연구부) ;
  • 김규랑 (국립기상과학원 기상응용연구부)
  • Received : 2024.03.28
  • Accepted : 2024.06.04
  • Published : 2024.06.30

Abstract

Wind is a meteorological factor that has a significant impact on agriculture. Gust cause damage such as fruit drop and damage to facilities. In this study, low-altitude wind speed prediction was performed by applying physical models to Local Ensemble Prediction System (LENS). Logarithmic Law (LOG) and Power Law (POW) were used as the physical models, and Korea Ministry of Environment indicators and Moderate Resolution Imaging Spectroradiometer (MODIS) data were applied as indicator variables. We collected and verified wind and gust data at 3m altitude in 2022 operated by the Rural Development Administration, and presented the results in scatter plot, correlation coefficient, Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and Threat Score (TS). The LOG-applied model showed better results in wind speed, and the POW-applied model showed better results in gust.

바람은 농업환경에 주요한 영향을 주는 기상요소이며, 강풍은 낙과, 시설물 파괴 등의 피해를 일으킨다. 본 연구는 LENS에 물리모델을 적용해서 농경지에 활용될 수 있는 저고도 풍속예측을 진행하였다. 물리모델은 LOG, POW가 사용되었고 지표 변수에 대해서는 환경부지표와 MODIS 지표를 따로 적용하였다. 농촌진흥청에서 운영하는 2022년도 3 m 고도의 바람 및 강풍 자료를 수집하고 검증을 진행하였고 결과를 산점도, 상관계수, RMSE, NRMSE, TS로 나타내었다. 풍속비교 4가지 방법의 결과에서 모델이 관측보다 더 크게 예측하고 있음을 확인할 수 있었다. 강풍 기준 값이 3 m s-1 일 때, TS 가 약 0.65 정도로 나타났다. 결과는 RMSE와 NRMSE에서는 LOG_L, LOG_M, POW_L, POW_M 순으로 좋게 나타났고 상관계수와 TS에서는 역순으로 좋게 나타났다. 이러한 결과는 정해진 강풍 기준을 추가하여, 농경지 바람 및 강풍확률예측 연구에 도움이 될 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 "기상업무지원기술개발연구-생명기상 및 농림기상 기술개발(KMA 2018-00626)"의 지원으로 수행되었습니다. 논문의 가독성 향상에 큰 도움을 주신 심사자 두 분께도 감사드립니다.

References

  1. Aghbalou, N., A. Charki, S. R. Elazzouzi, and K. Reklaoui, 2018: A probabilistic assessment approach for wind turbine-site matching. Electrical Power and Energy System 103, 497-510.
  2. Blackadar, A. K., and H. Tennekes, 1968: Asymptotic similarity in neutral barotropic planetary boundary layers. Journal of the Atmospheric Science 25, 1015-1020.
  3. Chavan, D. S., S. Gaikwad, A. Singh, Himanshu, D. Parashar, V. Saahil, J. Sankpal, and P. B. Karandikar, 2017: Impact of vertical wind shear on wind turbine performance. International Conference on circuits Power and Computing Technologies (ICCPCT), Kollam, 1-6p.
  4. Demaria, M., J. A. Knaff, R. Knabb, C. Lauer, C. R. Sampson, and R. T. Demaria, 2009: A new method for estimating tropical cyclone wind speed probabilities. American Meteorological Society 24, 1573-1591.
  5. Emeis, S., 2014: Current issues in wind energy meteorology. Meteorological Application 21, 803-819.
  6. Garratt, J., 1992: The atmospheric boundary layer. Cambridge Atmospheric and Space Science Series, 444p.
  7. Kent, C. W., C. S. B. Grimmond, D. Gatey, and J. F. Barlow, 2018: Assessing methods to extrapolate the vertical wind-speed profile from surface observations in a city centre during strong winds. Journal of Wind Engineering & Industrial Aerodynamics 173, 100-111.
  8. Kim, H.-G., J. O. Choi, J. B. Son, W. S. Jung, and H. W. Lee, 2003: Analysis of wind environments for siting a wind farm. Journal of Korean Society for Atmospheric Environment 19(6), 745-756. (in Korean with English abstract)
  9. Kim, S., H. M. Kim, J. Gye, and S. Lee, 2013: Construction of ensemble system based on local forecast model. Atmospheric Sciences, Yonsei University, 480-481.
  10. Kim, Y., B. Kim, G. Ko, M. Choi, H. Song, G. Kim, S. Yoo, J. Lim, K. Bok, and J. Yoo, 2016: Design and implementation of a flood disaster safety system using realtime weather big data. Journal of Korean Contents Association 17(1). (in Korean with English abstract)
  11. Ko, C.-M., Y. Y. Jeong, Y.-M. Lee, and B.-S. Kim, 2020: The development of a quantitative precipitation forecast correction technique based on machine learning for hydrological applications. Atmospheric 11, 111p.
  12. Lee, S. H., Y. J. Seong, K. Kim, and Y. Jung, 2020: Appraisal of spatial characteristics and applicability of the predicted ensemble rainfall data. Korea Water Resources Association 53(11), 1025-1037. (in Korean with English abstract)
  13. Lee, Y.-G., S.-B. Ryoo, K. Han, H. W. Choi, and C. Kim, 2020: Inter-comparison of ensemble forecasts for low level wind shear against local analyses data over Jeju area. Atmosphere 11, 198.
  14. Monteith, J. L., 1973: Principles of environmental physics. Elsevier, New York, 241p.
  15. Shin, S.-H., Y.-S. Lee, and K.-J. Ha, 2006: Effect of direct solar radiation with sloped topography in a mesoscale meteorological model. Journal of Korean Geographic Information Society 9(4), 45-59. (in Korean with English abstract)
  16. Tennekes, H., 1973: The logarithmic wind profile. Journal of the Atmospheric Science 30, 234-238.
  17. Yun, J. I. and K. Cho, 2001: Yield, and production forecasting of paddy rice at a sub-county scale resolution by using crop simulation and weather interpolation techniques. Korean Journal of Agricultural and Forest Meteorology 3, 37-43. (in Korean with English abstract)