Acknowledgement
We thank for Prof. Youngryel Ryu internal discussion. This research was supported by the Technology Development Project for Creation and Management of Ecosystem based Carbon Sinks (202300218237) through the Korea Environmental Industry & Technology Institute (KEITI) funded by the Ministry of Environment (MOE).
References
- Badgley, G., C. B. Field, and J. A. Berry, 2017: Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances 3(3), e1602244. https://doi.org/doi:10.1126/sciadv.1602244
- Baldocchi, D. D., Y. Ryu, B. Dechant, E. Eichelmann, K. Hemes, S. Ma, C. R. Sanchez, R. Shortt, D. Szutu, and A. Valach, 2020: Outgoing near-infrared radiation from vegetation scales with canopy photosynthesis across a spectrum of function, structure, physiological capacity, and weather. Journal of Geophysical Research: Biogeosciences 125(7), e2019JG005534.
- Caparros-Santiago, J. A., V. Rodriguez-Galiano, and J. Dash, 2021: Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review. ISPRS Journal of Photogrammetry and Remote Sensing 171, 330-347. https://doi.org/10.1016/j.isprsjprs.2020.11.019
- Chen, R., G. Yin, G. Liu, J. Li, and A. Verger, 2020: Evaluation and normalization of topographic effects on vegetation indices. Remote Sensing 12(14), 2290. https://www.mdpi.com/2072-4292/12/14/2290
- Chen, R., G. Yin, W. Zhao, B. Xu, Y. Zeng, G. Liu, and A. Verger, 2022: TCNIRv: Topographically corrected near-infrared reflectance of vegetation for tracking gross primary production over mountainous areas. IEEE Transactions on Geoscience and Remote Sensing 60, 1-10. https://doi.org/10.1109/TGRS.2022.3149655
- Chen, R., G. Yin, W. Zhao, K. Yan, S. Wu, D. Hao, and G. Liu, 2023a: Topographic correction of optical remote sensing images in mountainous areas: A systematic review. IEEE Geoscience and Remote Sensing Magazine, 2-22. https://doi.org/10.1109/MGRS.2023.3311100
- Chen, R., G. Yin, G. Liu, Y. Yang, C. Wang, Q. Xie, and A. Verger, 2023b: Correction of illumination effects on seasonal divergent NIRv photosynthetic phenology. Agricultural and Forest Meteorology, 339, 109542. https://doi.org/10.1016/j.agrformet.2023.109542
- Dash, J., and B. O. Ogutu, 2016: Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems. Progress in Physical Geography 40(2), 322-351. https://doi.org/10.1177/0309133316639403
- de Beurs, K. M., and G. M. Henebry, 2004: Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sensing of Environment 89(4), 497-509. https://doi.org/10.1016/j.rse.2003.11.006
- Florinsky, I., T. Skrypitsyna, and O. Luschikova, 2018: Comparative accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: A case study on the Zaoksky testing ground, Central European Russia. Remote Sensing Letters 9(7), 706-714. https://doi.org/10.1080/2150704X.2018.1468098
- Guerrero, F. J. D. T., A. Hinojosa-Corona, T. G. Kretzschmar, 2016: A comparative study of NDVI values between north- and south-facing slopes in a semiarid mountainous region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(12), 5350-5356. https://doi.org/10.1109/JSTARS.2016.2618393
- Horn, B. K., 1981: Hill shading and the reflectance map. Proceedings of the IEEE 69(1), 14-47. https://doi.org/10.1109/PROC.1981.11918
- Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
- Karami, M., A. Westergaard-Nielsen, S. Normand, U. A. Treier, B. Elberling, and B. U. Hansen, 2018: A phenology-based approach to the classification of Arctic tundra ecosystems in Greenland. ISPRS Journal of Photogrammetry and Remote Sensing 146, 518-529. https://doi.org/10.1016/j.isprsjprs.2018.11.005
- Rodriguez-Galiano, V. F., J. Dash, and P. M. Atkinson, 2015: Characterising the land surface phenology of Europe using decadal MERIS data. Remote Sensing 7(7), 9390-9409. https://www.mdpi.com/2072-4292/7/7/9390 https://doi.org/10.3390/rs70709390
- Wang, H., D. Yakir, E. Rotenberg, 2023: Assessing the effectiveness of a central flux tower in representing the spatial variations in gross primary productivity in a semi-arid pine forest. Agricultural and Forest Meteorology 333, 109415. https://doi.org/10.1016/j.agrformet.2023.109415
- Wang, R., J. M. Chen, Z. Liu, Z., A. Arain, 2017: Evaluation of seasonal variations of remotely sensed leaf area index over five evergreen coniferous forests. ISPRS Journal of Photogrammetry and Remote Sensing 130, 187-201. https://doi.org/10.1016/j.isprsjprs.2017.05.017
- Wang, X., M. P. Dannenberg, D. Yan, M. O. Jones, J, S. Kimball, D. J. P. Moore, W. J. D. van Leeuwen, K. Didan, and W. K. Smith, 2020: Globally consistent patterns of asynchrony in vegetation phenology derived from optical, microwave, and fluorescence satellite data. Journal of Geophysical Research: Biogeosciences 125(7), e2020JG005732. https://doi.org/10.1029/2020JG005732
- Wang, X., J. Xiao, X. Li, G. Cheng, M. Ma, G. Zhu, M. Altaf Arain, T. Andrew Black, and R. S. Jassal, 2019: No trends in spring and autumn phenology during the global warming hiatus. Nature Communications 10(1), 2389. https://doi.org/10.1038/s41467-019-10235-8
- Wen, J., Q. Liu, Q. Liu, Q. Xiao, Q. and X. Li, 2009: Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China. International Journal of Remote Sensing 30(11), 2875-2896. https://doi.org/10.1080/01431160802558618
- White, M. A., P. E. Thornton, and S. W. Running, 1997: A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles 11(2), 217-234. https://doi.org/10.1029/97GB00330
- Yang, Y., R. Chen, G. Yin, C. Wang, G. Liu, A. Verger, A. Descals, I. Filella, and J. Penuelas, 2022: Divergent performances of vegetation indices in extracting photosynthetic phenology for northern deciduous broadleaf forests. IEEE Geoscience and Remote Sensing Letters 19, 1-5. https://doi.org/10.1109/LGRS.2022.3182405
- Yang, Y., and F. Fan, 2023: Land surface phenology and its response to climate change in the Guangdong-Hong Kong-Macao Greater Bay Area during 2001-2020. Ecological Indicators 154, 110728. https://doi.org/10.1016/j.ecolind.2023.110728
- Yin, G., A. Li, S. Wu, W. Fan, Y. Zeng, K. Yan, B., Xu, J. Li, and Q. Liu, 2018: PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction. Remote Sensing of Environment 215, 184-198. https://doi.org/10.1016/j.rse.2018.06.009
- Yin, G., A. Verger, I. Filella, A. Descals, and J. Penuelas, 2020a: Divergent estimates of forest photosynthetic phenology using structural and physiological vegetation indices. Geophysical Research Letters 47(18), e2020GL089167.
- Yin, G., L. Ma, W. Zhao, Y. Zeng, B. Xu, and S. Wu, 2020b: Topographic correction for Landsat 8 OLI vegetation reflectances through path length correction: A comparison between explicit and implicit methods. IEEE Transactions on Geoscience and Remote Sensing 58(12), 8477-8489. https://doi.org/10.1109/TGRS.2020.2987985
- Zeng, L., B. D. Wardlow, D. Xiang, S. Hu, and D. Li, 2020: A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment 237, 111511. https://doi.org/10.1016/j.rse.2019.111511
- Zhang, Y., R. Commane, S. Zhou, A. P. Williams, and P. Gentine, 2020: Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nature Climate Change 10(8), 739-743. https://doi.org/10.1038/s41558-020-0806-0