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RULED SURFACES GENERATED BY SALKOWSKI CURVE AND

ITS FRENET VECTORS IN EUCLIDEAN 3-SPACE

Ebru Çakıl and Sümeyye Gür Mazlum∗

Abstract. In present study, we introduce ruled surfaces whose base curve is the
Salkowski curve in Euclidean 3-space and whose generating lines consist of the Frenet
vectors of this curve (tangent, principal normal and binormal vectors). Then, we
produce regular surfaces from a vector with real coefficients, which is a linear com-
bination of these vectors, and we examine some special cases for these surfaces.
Moreover, we present some geometric properties and graphics of all these surfaces.

1. Introduction

In differential geometry, surfaces have a substantial place and concepts in various
disciplines such as computer graphics, physics,and engineering. Ruled surfaces, one
of the most familiar examples of surfaces, were introduced by the 19th century French
mathematician G. Monge. A ruled surface is defined as a set of points created by
continuously moving a line along a curve. This curve is called the base curve and the
line is called the generating line (direction vector) of the ruled surface. For example;
while a cylinder and a cone are ruled surfaces, a sphere is not a ruled surface. Ruled
surfaces have applications in several disciplines such as kinematics, computer-aided
geometric design, and architecture. Some studies on ruled surfaces are [1, 3–6, 12, 18,
22,23,25–29]. Another important area in differential geometry is the theory of curves.
A smooth transformation of the form α : I → R3, where I is an open interval of R, is
called a curve in R3. Frenet vectors of a differentiable curve in R3 are tangent vector
T , principal normal vector N , and binormal vector B, [6]. An example of curves in
R3 are helices. An ivy wrapped around a tree or wall, a DNA model, spiral stairs,
or the grooves and sets engraved on a screw are all examples of helices. Helices are
called curves with constant non-zero curvature and torsion functions. The helix curve
was first expressed by Lancret and proved by Sain Venant in 1845. The concept of
slant helix was first defined in an article published by Izumiya and Takeuchi, [13].
Other studies on slant helices are [2, 9, 15, 19]. Salkowski curves, which are examples
of the slant helices, were defined as a family of curves with constant curvature and
non-constant torsion in the work of E. Leopold Salkowski’s (1909), [24]. Similarly,
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curves whose curvature is not constant and whose torsion is constant are known as
anti-Salkowski curves. Juan Monterde (2009) gave the Frenet vectors of Salkowski
curves in his study [20]. Some other studies on Salkowski curves in Euclidean 3-space
are [7, 8, 10,21].

In this study, we first introduce ruled surfaces whose base curve is the Salkowski
curve in Euclidean 3-space and whose generating lines consists of Frenet vectors (tan-
gent, principal normal and binormal vectors) of this curve. Then, we also generate
ruled surfaces from a vector X (t) = aT (t) + bN (t) + cB (t) with real coefficients
a, b, c, which consists of the linear combination of these vectors. Finally, we obtaine
from vectors lying in the normal, rectifying and osculating planes of this curve. So, we
calculate the equations of normal vectors, striction curves, distribution parameters,
tangent and asymptotic planes for all these surfaces. Besides we examine whether the
surfaces are developable or not and we provıde their graphs.

2. Preliminaries

For m 6= ± 1√
3
, 0 ∈ R and n =

m√
m2 + 1

, the family of curves defined by the para-

metric equation given below are called Salkowski curves in Euclidean 3-space [24]:

Υ (t) =
n

4m

[
n− 1

1 + 2n
sin((1 + 2n)t)− n+ 1

1− 2n
sin((1− 2n)t)− 2 sin t,

1− n
1 + 2n

cos((1 + 2n)t) +
n+ 1

1− 2n
cos((1− 2n)t) + 2 cos t,

1

m
cos(2nt)

]
,(1)

Figure 1.

Figure 1. Salkowski curve for m = 1
5
.

The curves are regular in the interval of
]
− π

2n
,
π

2n

[
. Moreover,

∥∥∥Υ
′
(t)
∥∥∥ =

cos (nt)√
m2 + 1

.
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Frenet vectors of Υ(t) are [20]:

(2)


T (t) =

(
−S (t) , −R (t) , − n

m
sin(nt)

)
,

N (t) =
( n
m

sin t, − n

m
cos t, − n

)
,

B (t) =
(
−P (t) , −Q (t) ,

n

m
cos(nt)

)
,

where,

P (t) = cos t sin(nt)− n sin t cos(nt),

S (t) = cos t cos(nt) + n sin t sin(nt),

Q (t) = sin t sin(nt) + n cos t cos(nt),

R (t) = sin t cos(nt)− n cos t sin(nt).

The first derivatives of Salkowski curve and its Frenet vectors with respect to t are

(3) Υ′ (t) =
n

m
cos (nt)

(
−S (t) ,−R (t) ,− n

m
sin (nt)

)
and

(4)



T ′ (t) =
n2

m2
cos (nt) (sin t,− cos t,−m) ,

N ′ (t) =
n

m
(cos t, sin t, 0) ,

B′ (t) =
n2

m2
sin (nt) (sin t,− cos t,−m) ,

respectively.

3. Ruled Surfaces Generated by Salkowski Curve and Its Frenet Vectors
in Euclidean 3-Space

In this section, we will examine ruled surfaces whose base curve is the Salkowski
curve in Euclidean 3-space and whose generating lines consist of the tangent, principal
normal and binormal vectors of this curve.

3.1. Ruled Surfaces Generated by Salkowski Curve and Its Tangent Vector
T (t).

Theorem 3.1. Let the ruled surface whose base curve is Salkowski curve Υ (t) in
Euclidean 3-space and whose generating line is the tangent vector T (t) of this curve
is denoted by ϕT (t, vT ). The parametric equation of this surface is as follows (Figure
2):

ϕT (t, vT ) =

[
n

4m

(
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t

)
− vTS (t) ,

n

4m

(
1− n
1 + 2n

(cos(1 + 2n)t) +
n+ 1

1− 2n
(cos(1− 2n)t) + 2 cos t

)
− vTR (t) ,

n

4m2
cos(2nt)− vTn

m
sin(nt)

]
.(5)
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Proof. The parametric equation of the ruled surface ϕT (t, vT ) is written as

(6) ϕT (t, vT ) = Υ (t) + vT T (t) .

If (1) and (2) are substituted in (6), then (5) is obtained.

Theorem 3.2. The normal vector ηT (t) of the ruled surface ϕT (t, vT ) is as follows:

(7) ηT (t) =
vT n

m
cos(nt)

(
P (t) , Q (t) ,− n

m
cos(nt)

)
.

Proof. The normal vector ηT (t) of ϕT (t, vT ) is calculated with

(8) ηT (t) = (ϕT )t (t) ∧ (ϕT )vT (t) ,

where, the vector (ϕT )t (t) is derivative of ϕT (t, vT ) with respect to t and the vector
(ϕT )vT (t) is derivative of ϕT (t, vT ) with respect to vT . From (3) and (4),

(9) (ϕT )t (t) =
n

m
cos (nt)

[
S (t)− vT n

m
sin t, R (t) +

vT n

m
cos t,

n

m
sin(nt) + vT n

]
and from (2),

(10) (ϕT )vT (t) = T (t) = −
(
S (t) , R (t) ,

n

m
sin(nt)

)
are obtained. Thus, if (9) and (10) are substituted in (8), then (7) is obtained.

Theorem 3.3. Let the plane have a fixed point M = (x, y, z) and a variable point
D = (x0, y0, z0). The equation of the tangent plane of the ruled surface ϕT (t, vT ) is
as follows:

(x− x0)mP (t) + (y − y0)mQ (t)− (z − z0)n cos(nt) = 0.

Proof. The equation of the tangent plane of the ruled surface ϕT (t, vT ) is found by

(11) 〈DM, ηT (t)〉 = 0.

From (7) and (11), the theorem is proved.

Theorem 3.4. The parameter vT of the striction curve of the ruled surface ϕT (t, vT )
is as follows:

(12) vT = 0.

Proof. The parameter vT of the striction curve of ϕT (t, vT ) is calculated with

(13) vT = −〈T (t) ∧ T ′ (t) , T (t) ∧Υ′ (t)〉
〈T (t) ∧ T ′ (t) , T (t) ∧ T ′ (t)〉

.

From (2) and (4),

(14) T (t) ∧ T ′ (t) =
n

m
cos(nt)

(
−P (t), − Q(t),

n

m
cos(nt)

)
and from (2) and (3),

(15) T (t) ∧Υ′ (t) = (0, 0, 0)

are obtained. Thus, from (14) and (15),

(16) 〈T (t) ∧ T ′ (t) , T (t) ∧Υ′ (t)〉 = 0

is obtained. If (16) is substituted in (13), then (12) is obtained.
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Theorem 3.5. The parametric equation of the striction curve ψT (t) of the ruled
surface ϕT (t, vT ) is as follows:

ψT (t) =
n

4m

[
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t,

1− n
1 + 2n

(cos(1 + 2n)t) +
n+ 1

1− 2n
(cos(1− 2n)t) + 2 cos t,

1

m
cos(2nt)

]
.

Proof. The equation of the striction curve ψT (t) of ϕT (t, vT ) is obtained by sub-
stituting the parameter vT into the equation

(17) ψT (t) = Υ (t) + vT T (t) .

Thus, if (1) and (12) are substituted in (17), then the theorem is proved.

Corollary 3.6. The striction curve and the base curve (Salkowski curve) of the
ruled surface ϕT (t, vT ) coincide.

Theorem 3.7. Let the plane has a fixed point M = (x, y, z) and a variable point
D = (x0, y0, z0). The equation of the asymptotic plane of the ruled surface ϕT (t, vT )
is as follows:

(x− x0)mP (t) + (y − y0)mQ(t)− (z − z0)n cos(nt) = 0.

Proof. The normal vector at infinity of ϕT (t, vT ) is found by ηT∞ (t) = T (t)∧T ′ (t).
From (14),

(18) ηT∞ (t) = − n
m

cos(nt)
(
P (t) , Q (t) , − n

m
cos(nt)

)
is obtained. The equation of the asymptotic plane of the ruled surface ϕT (t, vT ) is
found by

(19) 〈DM, ηT∞ (t)〉 = 0.

From (18) and (19), the theorem is proved.

Theorem 3.8. The distribution parameter ρT (t) of the ruled surface ϕT (t, vT ) is
as follows:

ρT (t) = 0.

Proof. The distribution parameter ρT (t) of ϕT (t, vT ) is calculated with

(20) ρT (t) =
det (Υ′ (t) , T (t) , T ′ (t))

‖T ′ (t)‖2
.

From (3) and (14),

(21) det (Υ′ (t) , T (t) , T ′ (t)) = 0

is obtained. If (21) is substituted in (20), then the theorem is proved.

Corollary 3.9. The ruled surface ϕT (t, vT ) is a developable surface.
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Figure 2. Ruled surface generated by Salkowski curve and its tangent
vector T (t) for m = 1

5
. (The right image is the transparent form of the left

image.)

3.2. Ruled Surfaces Generated by Salkowski Curve and Its Principal Nor-
mal Vector N (t).

Theorem 3.10. Let the ruled surface whose base curve is Salkowski curve Υ (t)
in Euclidean 3-space and whose generating line is the principal normal vector N (t)
of this curve is denoted by ϕN (t, vN ). The parametric equation of this surface is as
follows (Figure 3):

ϕN (t, vN ) =
n

4m

[
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t+ 4vN sin t,

1− n
1 + 2n

(cos(1 + 2n)t) +
n+ 1

1− 2n
(cos(1− 2n)t) + 2 cos t− 4vN cos t,

1

m
cos(2nt)− 4vNm

]
.(22)

Proof. The parametric equation of the ruled surface ϕN (t, vN ) is written as

(23) ϕN (t, vN ) = Υ (t) + vNN (t) .

If (1) and (2) are substituted in (23), then (22) is obtained.

Theorem 3.11. The normal vector ηN (t) of the ruled surface ϕN (t, vN ) is as
follows:
(24)

ηN (t) = − n
m

[
P (t) cos(nt) + vNn sin t, Q (t) cos(nt)− vNn cos t,

n

m

(
vN − cos2(nt)

)]
.

Proof. From (3) and (4),
(25)

(ϕN )t (t) = − n
m

[
S (t) cos (nt)− vN cos t, R (t) cos (nt)− vN sin t,

n

m
cos (nt) sin(nt)

]
,

and from (2),

(26) (ϕN )vN (t) = N (t) =
n

m

(
sin t, − cos t, − m

n

)
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are obtained. Thus, if (25) and (26) are substituted in (8), then the theorem is
proved.

Theorem 3.12. Let the plane has a fixed point M = (x, y, z) and a variable point
D = (x0, y0, z0). The equation of the tangent plane of the ruled surface ϕN (t, vN )
is as follows:

(x− x0)m (P (t) cos(nt) + vNn sin t)

+ (y − y0)m (Q (t) cos(nt)− vNn cos t)

− (z − z0)n
(
cos2(nt)− vN

)
= 0.

Proof. The equation of the tangent plane of ϕN (t, vN ) is found by

(27) 〈DM, ηN (t)〉 = 0.

From (24) and (27), the theorem is proved.

Theorem 3.13. The parameter vN of the striction curve of the ruled surface
ϕN (t, vN ) is as follows:

(28) vN = cos2(nt).

Proof. From (2) and (4),

(29) N (t) ∧N ′ (t) =
n2

m

(
sin t, − cos t,

1

m

)
and from (2) and (3),

(30) N (t) ∧Υ′ (t) =
n

m
cos(nt)

(
P (t) , Q (t) , − n

m
cos(nt)

)
are obtained. Thus, from (29) and (30),

(31) 〈N (t) ∧N ′ (t) , N (t) ∧Υ′ (t)〉 = − n
2

m2
cos2(nt).

and

(32) 〈N (t) ∧N ′ (t) , N (t) ∧N ′ (t)〉 =
n2

m2

are obtained. If (31) and (32) are substituted in (13), then the theorem is proved.

Theorem 3.14. The parametric equation of the striction curve ψN (t) of the ruled
surface ϕN (t, vN ) is as follows:

ψN (t) =
n

4m

[
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t+ 4 cos2(nt) sin t,

1− n
1 + 2n

(cos(1 + 2n)t) +
n+ 1

1− 2n
(cos(1− 2n)t) + 2 cos t− 4 cos2(nt) cos t,

1

m
cos(2nt)− 4m cos2(nt)

]
.

Proof. The equation of the striction curve ψN (t) of ϕN (t, vN ) is obtained by sub-
stituting the parameter vN into the equation

(33) ϕN (t) = Υ (t) + vNN (t) .

Thus, if (1), (2) and (28) are substituted in (33), then the theorem is proved.
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Corollary 3.15. Since cos(nt) 6= 0, the striction curve and the base curve
(Salkowski curve) of the ruled surface ϕN (t, vN ) never coincide.

Theorem 3.16. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the asymptotic plane of the ruled surface
ϕN (t, vN ) is as follows:

(x− x0)m sin t+ (y − y0)m cos t+ (z − z0) = 0.

Proof. The normal vector at infinity of ϕN (t, vN ) is found by ηN∞ (t) = N (t) ∧
N ′ (t). From (29),

(34) ηN∞ (t) = − n
m

cos(nt)
[
P (t) , Q (t) , − n

m
cos(nt)

]
is obtained. The equation of the asymptotic plane of the ruled surface ϕN (t, vN ) is
found by

(35) 〈DM, ηN∞ (t)〉 = 0.

From (34) and (35), the theorem is proved.

Theorem 3.17. The distribution parameter ρN (t) of the ruled surface ϕN (t, vN )
is as follows:

ρN (t) = − cos(nt) sin(nt).

Proof. From (3) and (29),

(36) det (Υ′ (t) , N (t) , N ′ (t)) = − n
2

m2
cos(nt) sin(nt)

and from (4),

(37) ‖N ′ (t)‖2 =
n2

m2

are obtained. If (36) and (37) are substituted in (70), the theorem is proved.

Corollary 3.18. Since cos(nt) 6= 0 and sin(nt) 6= 0, the ruled surface ϕN (t, vN )
is never a developable surface.

Figure 3. Ruled surface generated by Salkowski curve and its principal
normal vector N (t) for m = 1

5
. (The right image is the transparent form of

the left image.)
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3.3. Ruled Surfaces Generated by Salkowski Curve and Its Binormal Vec-
tor B(t).

Theorem 3.19. Let the ruled surface whose base curve is Salkowski curve Υ (t) in
Euclidean 3-space and whose generating line is the binormal vector B (t) of this curve
is denoted by ϕB (t, vB). The parametric equation of this surface is as follows (Figure
4):

ϕB (t, vB) =

[
n

4m

(
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t

)
− vBP (t) ,

n

4m

(
1− n
1 + 2n

(cos(1 + 2n)t) +
n+ 1

1− 2n
(cos(1− 2n)t) + 2 cos t

)
− vBQ (t) ,

n

4m2
cos(2nt) +

vBn

m
cos(nt)

]
.(38)

Proof. The parametric equation of the ruled surface ϕB (t, vB) is written as

(39) ϕB (t, vB) = Υ (t) + vBB (t) .

If (1) and (2) are substituted in (39), then (38) is obtained.

Theorem 3.20. The normal vector ηB (t) of the ruled surface ϕB (t, vB) is as follows:

ηB(t) = − n
m

[ n
m

sin t cos(nt) + vBS (t) sin(nt),

− n

m
cos t cos(nt) + vBR (t) sin(nt),

n

m
(m cos(nt)− vB sin2(nt)

]
.(40)

Proof. From (3) and (4),

(ϕB)t (t) = − n
m

[
S (t) cos (nt)− vBn

m
sin t sin (nt) ,

R (t) cos (nt) +
vBn

m
cos t sin (nt) ,

n

m
sin (nt) (cos (nt) + vBm)

]
(41)

and from (2),

(42) (ϕB)vB (t) = B(t) =
(
−P (t) , −Q (t) ,

n

m
cos(nt)

)
are obtained. Thus, if (41) and (42) are substituted in (8), then the theorem is
proved.

Theorem 3.21. Let the plane has a fixed point M = (x, y, z) and a variable point
D = (x0, y0, z0). The equation of the tangent plane of the ruled surface ϕB (t, vB) is
as follows:

(x− x0) (n sin t cos(nt) + vBmS (t) sin(nt))

− (y − y0) (n cos t cos(nt)− vBmR (t) sin(nt))

− (z − z0)
(
nm cos (nt)− vBn sin2(nt)

)
= 0.
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Proof. The equation of the tangent plane of ϕB (t, vB) is found by

(43) 〈DM, ηB (t)〉 = 0.

From (40) and (43), the theorem is proved.

Theorem 3.22. The parameter vB of the striction curve of the ruled surface
ϕB (t, vB) is as follows:

(44) vB = 0.

Proof. From (2) and (4),

(45) B (t) ∧ B′ (t) =
n

m
sin(nt)

(
S (t) , R (t) ,

n

m
sin(nt)

)
and from (2) and (3),

(46) B (t) ∧Υ′ (t) =
n2

m2
cos(nt) (sin t, − cos t, −m)

are obtained. Thus, from (45) and (46),

(47) 〈B (t) ∧ B′ (t) , B (t) ∧Υ′ (t)〉 = 0

is obtained. If (47) is substituted in (13), then the theorem is proved.

Theorem 3.23. The parametric equation of the striction curve ψB (t) of the ruled
surface ϕB (t, vB) is as follows:

ψB (t) =
n

4m

[
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t,

1− n
1 + 2n

(cos(1 + 2n)t) +
n+ 1

1− 2n
(cos(1− 2n)t) + 2 cos t,

1

m
cos(2nt)

]
.

Proof. The equation of the striction curve ψB (t) of ϕB (t, vB) is obtained by sub-
stituting the parameter vB into the equation

(48) ϕB (t) = Υ (t) + vBB (t) .

Thus, if (1), (2) and (44) are substituted in (48), then the theorem is proved.

Corollary 3.24. The striction curve and the base curve (Salkowski curve) of the
ruled surface ϕB (t, vB) coincide.

Theorem 3.25. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the asymptotic plane of the ruled surface
ϕB (t, vB) is as follows:

(x− x0)mS (t) + (y − y0)mR (t) + (z − z0)n sin(nt) = 0.

Proof. The normal vector at infinity of ϕB (t, vB) is found by ηB∞ (t) = B (t)∧B′ (t).
From (45),

(49) ηB∞ (t) =
n

m
sin(nt)

(
S (t) , R (t) ,

n

m
sin(nt)

)
is obtained. The equation of the asymptotic plane of the ruled surface ϕB (t, vB) is
found by

(50) 〈DM, ηB∞ (t)〉 = 0.
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From (49) and (50), the theorem is proved.

Theorem 3.26. The distribution parameter ρB (t) of the ruled surface ϕB (t, vB) is
as follows:

ρB (t) = −cos(nt)

sin(nt)
.

Proof. From (3) and (45),

(51) det (Υ′ (t) , B (t) , B′ (t)) = − n
2

m2
cos(nt) sin(nt)

and from (4),

(52) ‖B′ (t)‖2 =
n2

m2
sin2 (nt)

are obtained. If (51) and (52) are substituted in (70), then the theorem is proved.

Corollary 3.27. Since cos(nt) 6= 0, the ruled surface ϕB (t, vB) is never a devel-
opable surface.

Figure 4. Ruled surface generated by Salkowski curve and its binor-
mal vector B(t) for m = 1

5
. (The right image is the transparent form of the left

image.)

4. Ruled Surfaces Generated by Salkowski Curve and Linear Combina-
tions of Its Frenet Vectors in Euclidean 3-Space

In this section, firstly ruled surfaces whose base curve is the Salkowski curve and
direction vector is the vector

(53) X (t) = aT (t) + bN (t) + cB (t) , a, b, c ∈ R,
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are obtained, whereX(t) represents the vectors with real coefficients obtained from the
linear combinations of the Frenet vectors of the Salkowski curve. Now, let’s compute
the vector X(t). If the vectors in (2) is substituted in (53),

X (t) = −
(
aS (t) + cP (t)− bn

m
sin t, aR (t) + cQ (t) +

bn

m
cos t,

n

m
C (t) + bn

)
(54)

is obtained, where

C (t) = a sin(nt)− c cos(nt).

The first derivative of X(t) with respect to t is

(55) X ′ (t) =
n2

m2
(A (t) sin t+ b cos t,−A (t) cos t+ b sin t,−mA (t)) ,

where

A (t) = a cos(nt) + c sin(nt).

Theorem 4.1. Let the ruled surface whose base curve is Salkowski curve Υ (t) in
Euclidean 3-space and whose generating line is the vector X (t) = aT (t) + bN (t) +
cB (t) is denoted by ϕX (t, vX). The parametric equation of this surface is as follows
(Figure 5):

ϕX (t, vX) =

[
n

4m

(
n− 1

1 + 2n
sin((1 + 2n)t)− n+ 1

1− 2n
sin((1− 2n)t)− 2 sin t

)
−vX

(
aS (t) + cP (t)− bn

m
sin t

)
,

n

4m

(
1− n
1 + 2n

cos((1 + 2n)t) +
n+ 1

1− 2n
cos((1− 2n)t) + 2 cos t

)
−vX

(
aR (t) + cQ (t) +

bn

m
cos t

)
,

n

4m2
cos(2nt)− vXn

(
1

m
C (t) + b

)]
.(56)

Proof. The parametric equation of the ruled surface ϕX (t, vX) is written as

(57) ϕX (t, vX) = Υ (t) + vXX (t) .

If (1) and (54) are substituted in (57), then (56) is obtained.
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Theorem 4.2. The normal vector ηX (t) of the ruled surface ϕX (t, vX) is as follows:

ηX (t) = − n
m

(
cos(nt)

(
bP (t) +

cn

m
sin t

)
+ vX

(
bn sin t

(
1

m
C (t) + b

)
− A (t) (aP (t)− cS (t))

)
,

cos(nt)
(
bQ (t)− cn

m
cos t

)
− vX

(
bn cos t

(
1

m
C (t) + b

)
+ A (t) (aQ (t)− cR (t))

)
,

− n cos(nt)

(
b

m
cos(nt) + c

)
−vXn

(
b

(
C (t)− b

m

)
− 1

m
A2 (t)

))
.(58)

Proof. From (3) and (55),

(ϕX)t (t) = − n
m

(
S (t) cos(nt)− vX

( n
m
A (t) sin t+ b cos t

)
,

R (t) cos(nt) + vX

( n
m
A (t) cos t− b sin t

)
,

n

m
cos(nt) sin(nt) + vXnA (t)

)
(59)

and from (54),
(60)

(ϕX)vX (t) = −
(
aS (t) + cP (t)− bn

m
sin t, aR (t) + cQ (t) +

bn

m
cos t,

n

m
C (t) + bn

)
are obtained. Thus, if (59) and (60) are substituted in (8), then (58) is obtained.

Theorem 4.3. Let the plane have a fixed point M = (x, y, z) and a variable point
D = (x0, y0, z0). The equation of the tangent plane of the ruled surface ϕX (t, vX) is
as follows:

(x− x0)
[
cos(nt)

(
bP (t) +

cn

m
sin t

)
− vX

(
bn sin t

(
1

m
C (t) + b

)
−A (t) (aP (t)− cS (t))

)]
− (y − y0)

[
cos(nt)

(
bQ (t)− cn

m
cos t

)
+ vX

(
bn cos t

(
1

m
C (t) + b

)
+A (aQ (t)− cR (t))

)]
− (z − z0)

[
n cos(nt)

(
c+

b

m
cos(nt)

)
+ vXn

(
b

(
C (t)− b

m

)
− 1

m
A2(t)

)]
= 0.

Proof. The equation of the tangent plane of the ruled surface ϕX (t, vX) is found
by

(61) 〈DM, ηX (t)〉 = 0.

From (58) and (61), the theorem is proved.

Theorem 4.4. The parameter vX of the striction curve of the ruled surface ϕX (t, vX)
is as follows:

(62) vX =
b cos2 (nt)

A2 (t) + b2
.
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Proof. From (54) and (55),

X (t) ∧X ′ (t) =
n

m

(
A (t) (cS (t)− aP (t)) + bn sin t

(
1

m
C (t) + b

)
,

A (t) (cR (t)− aQ (t))− bn cos t

(
1

m
C (t) + b

)
,

n

m
A2 (t)− bn

(
C (t)− b

m

))
(63)

and from (3) and (54),
(64)

X (t) ∧Υ′ (t) =
n

m
cos(nt)

(
bP (t) +

cn

m
sin t, bQ (t)− cn

m
cos t, − cn− bn

m
cos(nt)

)
are obtained. Thus, from (63) and (64),

(65) 〈X (t) ∧X ′ (t) , X (t) ∧Υ′ (t)〉 = −bn
2

m2
cos2 (nt)

(
a2 + b2 + c2

)
and

(66) 〈X (t) ∧X ′ (t) , X (t) ∧X ′ (t)〉 =
n2

m2

(
A2 (t) + b2

) (
a2 + b2 + c2

)
are obtained. If (65) and (66) are substituted in (13), then (62) is obtained.

Theorem 4.5. The parametric equation of the striction curve ψX (t) of the ruled
surface ϕX (t, vX) is as follows:

ψX (t) =

[
n

4m

(
n− 1

1 + 2n
sin((1 + 2n)t)− n+ 1

1− 2n
sin((1− 2n)t)− 2 sin t

)
− b cos2(nt)

A2 (t) + b2

(
aS (t) + cP (t)− bn

m
sin t

)
,

n

4m

(
1− n
1 + 2n

cos((1 + 2n)t) +
n+ 1

1− 2n
cos((1− 2n)t) + 2 cos t

)
− b cos2(nt)

A2 (t) + b2

(
aR (t) + cQ (t) +

bn

m
cos t

)
,

n

4m2
cos(2nt)− bn cos2(nt)

A2 (t) + b2

(
1

m
C (t) + b

)]
.

Proof. The equation of the striction curve ψX (t) of ϕX (t, vX) is obtained by sub-
stituting the parameter vX into the equation

(67) ψX (t) = Υ (t) + vXX (t) .

Thus, if (1), (54) and (62) are substituted in (67), then the theorem is proved.

Corollary 4.6. If b = 0, then the striction curve and the base curve (Salkowski
curve) of the ruled surface ϕX (t, vX) coincide.

Theorem 4.7. Let the plane has a fixed point M = (x, y, z) and a variable point
D = (x0, y0, z0). The equation of the asymptotic plane of the ruled surface ϕX (t, vX)
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is as follows:

(x− x0)
[
A (t) (C (t) cos t− nA (t) sin t)− bn sin t

(
1

m
C (t) + b

)]
+ (y − y0)

[
A (t) (C (t) sin t+ nA (t) cos t)− bn cos t

(
1

m
C (t) + b

)]
− (z − z0)

[
n

(
1

m
A2 (t)− b

(
C (t)− b

m

))]
= 0.

Proof. The normal vector at infinity of ϕX (t, vX) is found by ηX∞ (t) = X (t) ∧
X ′ (t). From (63),

ηX∞ (t) =
n

m

(
A (t) (cS (t)− aP (t)) + bn sin t

(
1

m
C (t) + b

)
,

A (t) (cR (t)− aQ (t))− bn cos t

(
1

m
C (t) + b

)
,

n

m
A2 (t)− bn

(
C (t)− b

m

))
(68)

is obtained. The equation of the asymptotic plane of the ruled surface ϕX (t, vX) is
found by

(69) 〈DM, ηX∞ (t)〉 = 0.

From (68) and (69), the theorem is proved.

Theorem 4.8. The distribution parameter ρX (t) of the ruled surface ϕX (t, vX) is
as follows:

ρX (t) = −cos(nt) (ac cos(nt) + (b2 + c2) sin(nt))

A2 (t) + b2
.

Proof. From (3) and (63),

(70) det (Υ′ (t) , X (t) , X ′ (t)) = − n
2

m2
cos(nt)

(
ac cos(nt) +

(
b2 + c2

)
sin(nt)

)
and

(71) ‖X ′ (t)‖2 =
n2

m2

(
A2 (t) + b2

)
are obtained. If (70) and (71) are substituted in (20), then the theorem is proved.

Corollary 4.9. If b = c = 0, the ruled surface ϕX (t, vX) is a developable surface.

Now let’s examine some special cases for the vector X (t):

• Let’s give the propositions for the ruled surfaces generated by Salkowski curve
and the vector

XNB (t) =

(
−cP (t) +

bn

m
sin t, − cQ (t)− bn

m
cos t,

cn

m
cos(nt)− bn

)
lying on the normal plane.
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Figure 5. Ruled surface generated by Salkowski curve and the vector
X(t) for a = b = c = m = 1

5
. (The right image is the transparent form of the

left image.)

Proposition 4.1. Let the ruled surface whose base curve is Salkowski curve
Υ (t) in Euclidean 3-space and generating line is the vector XNB (t) is denoted by
ϕNB (t, vT B). The parametric equation of this surface is as follows (Figure 6):

ϕNB (t, vNB) =

[
n

4m

(
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t

)
+vNB

(
−cP (t) +

bn

m
sin t

)
,

n

4m

(
1− n
1 + 2n

(cos(1 + 2n)t) +
n+ 1

1− 2n
(cos(1− 2n)t) + 2 cos t

)
−vNB

(
cQ (t) +

bn

m
cos t

)
,

n

4m2
cos(2nt) + vNBn

( c
m

cos (nt)− b
)]
.

Proposition 4.2. The normal vector ηNB (t) of the ruled surface ϕNB (t, vNB) is
as follows:

ηNB(t) = − n
m

[
cos(nt)

(
bP +

cn

m
sin t

)
+ vNB

(
bn sin t

(
b− c

m
cos(nt)

)
+ c2S sin(nt)

)
,

cos(nt)
(
bQ− cn

m
cos t

)
− vNB

(
bn cos t

(
b− c

m
cos(nt)

)
− c2R sin(nt)

)
,

− cos(nt)

(
bn

m
cos(nt) + cn

)
+ vNBn

(
b

(
c cos(nt) +

b

m

)
+
c2

m
sin2(nt)

)]
.

Proposition 4.3. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the tangent plane of the ruled surface
ϕNB (t, vNB) is as follows:

(x− x0)
[
cos(nt) (bmP (t) + cn sin t) + vNB

(
bn sin t (bm− c cos(nt)) + c2mS (t) sin(nt)

)]
+ (y − y0)

[
cos(nt) (bmQ (t)− cn cos t)− vNB

(
bn cos t (bm− c cos(nt))− c2mR sin(nt)

)]
− (z − z0)

[
n cos(nt) (b cos(nt) + cm)− vNB

(
bn (cm cos(nt) + b) + c2n sin2(nt)

)]
= 0.
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Proposition 4.4. The parameter vNB of the striction curve of the ruled surface
ϕNB (t, vNB) is as follows:

vNB =
b cos2 (nt)

b2 + c2 sin2 (nt)
.

Proposition 4.5. The parametric equation of the striction curve ψNB (t) of the
ruled surface ϕNB (t, vNB) is as follows:

ψNB (t) =

[
n

4m

(
n− 1

1 + 2n
sin((1 + 2n)t)− n+ 1

1− 2n
sin((1− 2n)t)− 2 sin t

)
− b cos2 (nt)

b2 + c2 sin2 (nt)

(
cP (t)− bn

m
sin t

)
,

n

4m

(
1− n
1 + 2n

cos((1 + 2n)t) +
n+ 1

1− 2n
cos((1− 2n)t) + 2 cos t

)
− b cos2 (nt)

b2 + c2 sin2 (nt)

(
cQ (t) +

bn

m
cos t

)
,

n

4m2
cos(2nt)− bn cos2 (nt)

b2 + c2 sin2 (nt)

(
b− c

m
cos (nt)

)]
.

Proposition 4.6. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the asymptotic plane of the ruled surface
ϕNB (t, vNB) is as follows:

(x− x0)
[
c2mS (t) sin(nt) + bn sin t (bm− c cos(nt))

]
+ (y − y0)

[
c2mR (t) sin(nt)− bn cos t (bm− c cos(nt))

]
+ (z − z0)

[
n
(
c2 sin2(nt) + b (b+ cm cos(nt))

)]
= 0.

Proposition 4.7. The distribution parameter ρNB (t) of the ruled surface ϕNB (t, vNB)
is as follows:

ρNB (t) = −(b2 + c2) cos(nt) sin(nt)

c2 sin2(nt) + b2
.

• Let’s give the propositions for the ruled surfaces generated by Salkowski curve
and the vector

XT B (t) = −
(
aS (t) + cP (t) , aR (t) + cQ (t) ,

n

m
C (t)

)
lying on the rectifying plane.

Proposition 4.8. Let the ruled surface whose base curve is Salkowski curve Υ (t)
in Euclidean 3-space and whose generating line is the vector XT B (t) is denoted by
ϕT B (t, vT B). The parametric equation of this surface is as follows (Figure 7):

ϕT B (t, vT B) =

[
n

4m

(
n− 1

1 + 2n)
(sin(1 + 2n)t)− n+ 1

1− 2n)
(sin(1− 2n)t)− 2 sin t

)
−vT B (aS (t) + cP (t)) ,

n

4m

(
1− n

1 + 2n)
(cos(1 + 2n)t) +

n+ 1

1− 2n)
(cos(1− 2n)t) + 2 cos t

)
−vT B (aR (t) + cQ (t)) ,

n

4m2
cos(2nt)− vT Bn

m
C (t)

]
.
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Figure 6. Ruled surface generated by Salkowski curve and the vector
XNB(t) for a = 0, b = c = m = 1

5
. (The right image is the transparent form

of the left image.)

Proposition 4.9. The normal vector ηT B (t) of the ruled surface ϕT B (t, vT B) is
as follows:

ηT B(t) =
n

m

[
−cn
m

sin t cos(nt) + vT B (A (t) (aP (t)− cS (t))) ,

cn

m
cos t cos(nt) + vT B (A (t) (aQ (t)− cR (t))) ,

cn cos(nt)− vT Bn

m
A2 (t)

]
.

Proposition 4.10. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the tangent plane of the ruled surface
ϕT B (t, vT B) is as follows:

(x− x0) [−cn sin t cos(nt) + vTBm (A (t) (aP (t)− cS (t)))]

+ (y − y0) [cn cos t cos(nt) + vTBm (A (t) (aQ (t)− cR (t)))]

+ (z − z0)
[
cnm cos(nt)− vTBnA

2 (t)
]

= 0.

Proposition 4.11. The parameter vT B of the striction curve of the ruled surface
ϕT B (t, vT B) is as follows:

vT B = 0.

Proposition 4.12. The parametric equation of the striction curve ψT B (t) of the
ruled surface ϕT B (t, vT B) is as follows:

ψT B (t) =
n

4m

[
n− 1

1 + 2n
sin((1 + 2n)t)− n+ 1

1− 2n
sin((1− 2n)t)− 2 sin t,

1− n
1 + 2n

cos((1 + 2n)t) +
n+ 1

1− 2n
cos((1− 2n)t) + 2 cos t,

1

m
cos(2nt)

]
.
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Proposition 4.13. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the asymptotic plane of the ruled surface
ϕT B (t, vT B) is as follows:

(x− x0)m (C (t) cos t− nA (t) sin t)

+ (y − y0)m (C (t) sin t+ nA (t) cos t)

− (z − z0)nA (t) = 0

Proposition 4.14. The distribution parameter ρT B (t) of the ruled surface ϕT B (t, vT B)
is as follows:

ρT B (t) = −c cos(nt)

A (t)
.

Figure 7. Ruled surface generated by Salkowski curve and the vector
XT B(t) for b = 0, a = c = m = 1

5
. (The right image is the transparent form

of the left image.)

• Let’s give the propositions for the ruled surfaces generated by Salkowski curve
and the vector

XT N (t) = −
(
aS (t)− bn

m
sin t, aR (t) +

bn

m
cos t, n

(
b+

a

m
sin (nt)

))

lying on the osculator plane.

Proposition 4.15. Let the ruled surface whose base curve is Salkowski curve Υ (t)
in Euclidean 3-space and whose generating line is the vector XT N (t) is denoted by
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ϕT N (t, vT N ). The parametric equation of this surface is as follows (Figure 8):

ϕT N (t, vT N ) =

[
n

4m

(
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t

)
−vT N

(
aS (t)− bn

m
sin t

)
,

n

4m

(
1− n
1 + 2n

(cos(1 + 2n)t) +
n+ 1

1− 2n
(cos(1− 2n)t) + 2 cos t

)
−vT N

(
aR (t) +

bn

m
cos t

)
n

4m2
cos(2nt)− vT N n

(
b+

a

m
sin (nt)

)]
.

Proposition 4.16. The normal vector ηT N (t) of the ruled surface ϕT N (t, vT N )
is as follows:

ηT N (t) = − n
m

[
bP (t) cos(nt) + vT N

(
bn sin t

(
b+

a

m
sin(nt)

)
− a2P (t) cos(nt)

)
,

bQ (t) cos(nt)− vT N
(
bn cos t

(
b+

a

m
sin(nt)

)
+ a2Q (t) cos(nt)

)
,

− bn

m
cos2(nt) + vT Nn

(
b

(
b

m
− a sin(nt)

)
+
a2

m
cos2(nt)

)]
.

Proposition 4.17. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the tangent plane of the ruled surface
ϕT N (t, vT N ) is as follows:

(x− x0)
[
bP (t) cos(nt) + vT N

(
bn sin t

(
b+

a

m
sin(nt)

)
− a2P (t) cos(nt)

)]
+ (y − y0)

[
bQ (t) cos(nt)− vT N

(
bn cos t

(
b+

a

m
sin(nt)

)
+ a2Q (t) cos(nt)

)]
+ (z − z0)

[
−bn
m

cos2(nt) + vT Nn

(
b

(
b

m
− a sin(nt)

)
+
a2

m
cos2(nt)

)]
= 0.

Proposition 4.18. The parameter vT N of the striction curve of the ruled surface
ϕT N (t, vT N ) is as follows:

vT N =
b cos2 (nt)

a2 cos2 (nt) + b2
.

Proposition 4.19. The parametric equation of the striction curve ψT N (t) of the
ruled surface ϕT N (t, vT N ) is as follows:
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ψT N (t) =

[
n

4m

(
n− 1

1 + 2n
sin((1 + 2n)t)− n+ 1

1− 2n
sin((1− 2n)t)− 2 sin t

)
− b cos2 (nt)

a2 cos2 (nt) + b2

(
aS (t)− bn

m
sin t

)
,

n

4m

(
1− n
1 + 2n

cos((1 + 2n)t) +
n+ 1

1− 2n
cos((1− 2n)t) + 2 cos t

)
− b cos2 (nt)

a2 cos2 (nt) + b2

(
aR (t) +

bn

m
cos t

)
,

n

4m2
cos(2nt)− bn cos2 (nt)

a2 cos2 (nt) + b2

(
b+

a

m
sin (nt)

)]
.

Proposition 4.20. Let the plane have a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the asymptotic plane of the ruled surface
ϕT N (t, vT N ) is as follows:

(x− x0)
[
a2P (t) cos(nt)− bn sin t

(
b+

a

m
sin(nt)

)]
+ (y − y0)

[
a2Q (t) cos(nt) + bn cos t

(
b+

a

m
sin(nt)

)]
− (z − z0)

[
a2n

m
cos2(nt) + bn

(
b

m
− a sin(nt)

)]
= 0.

Proposition 4.21. The distribution parameter ρT N (t) of the ruled surface ϕT N (t, vT N )
is as follows:

ρT N (t) = −b
2 cos(nt) sin(nt)

a2 cos2(nt) + b2
.

Figure 8. Ruled surface generated by Salkowski curve and the vector
XT N (t) for c = 0, a = b = m = 1

5
. (The right image is the transparent form

of the left image.)
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• Let’s give the propositions for the ruled surfaces generated by Salkowski curve
and the vector

XT NB (t) = T (t) +N (t) + B(t)

= −
(
S (t) + P (t)− n

m
sin t, R (t) +Q (t) +

n

m
cos t,

n

m
(m− cos (nt) + sin (nt))

)
.

Proposition 4.22. Let the ruled surface whose base curve is Salkowski curve Υ (t)
in Euclidean 3-space and whose generating line is the vector XT NB (t) is denoted by
ϕT NB (t, vT NB). The parametric equation of this surface is as follows (Figure 9):

ϕT NB (t, vT NB) =

[
n

4m

(
n− 1

1 + 2n
(sin(1 + 2n)t)− n+ 1

1− 2n
(sin(1− 2n)t)− 2 sin t

)
−vT NB

(
S (t) + P (t)− n

m
sin t

)
,

n

4m

(
1− n

1 + 2n)
(cos(1 + 2n)t) +

n+ 1

1− 2n)
(cos(1− 2n)t) + 2 cos t

)
− vT NB

(
R (t) +Q (t) +

n

m
cos t

)
,

n

4m2
cos(2nt)− vT NBn

m
(m− cos (nt) + sin (nt))

]
.

Proposition 4.23. The normal vector ηT NB (t) of the ruled surface ϕT NB (t, vT NB)
is as follows:

ηT NB(t) = − n
m

[
cos(nt)

(
P (t) +

n

m
sin t

)
+vT NB

(
S (t) cos (nt)− P (t) sin (nt) +

n

m
sin t (2m− cos (nt) + sin (nt))

)
,

cos(nt)
(
Q (t)− n

m
cos t

)
+vT NB

(
R (t) cos (nt)−Q (t) sin (nt)− n

m
cos t (2m− cos (nt) + sin (nt))

)
,

−n cos(nt)

(
1 +

1

m
cos(nt)

)
+vT NBn

(
2

m
(1 + cos (nt) sin (nt)) + cos (nt)− sin (nt)

)]
.

Proposition 4.24. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the tangent plane of the ruled surface
ϕT NB (t, vT NB) is as follows:

(x− x0)
[
cos(nt)

(
P (t) +

n

m
sin t

)
+vT NB

(
S (t) cos (nt)− P (t) sin (nt) +

n

m
sin t (2m− cos (nt) + sin (nt))

)]
+ (y − y0)

[
cos(nt)

(
Q (t)− n

m
cos t

)
+vT NB

(
R (t) cos (nt)−Q (t) sin (nt)− n

m
cos t (2m− cos (nt) + sin (nt))

)]
+ (z − z0)

[
−n cos(nt)

(
1 +

1

m
cos(nt)

)
+vT NBn

(
2

m
(1 + cos (nt) sin (nt)) + cos (nt)− sin (nt)

)]
= 0.
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Proposition 4.25. The parameter vT NB of the striction curve of the ruled surface
ϕT NB (t, vT NB) is as follows:

vT NB =
cos2 (nt)

2 (1 + cos (nt) sin (nt))
.

Proposition 4.26. The parametric equation of the striction curve ψT NB (t) of the
ruled surface ϕT NB (t, vT NB) is as follows:

ψT NB (t) =

[
n

4m

(
n− 1

1 + 2n
sin((1 + 2n)t)− n+ 1

1− 2n
sin((1− 2n)t)− 2 sin t

)
− cos2 (nt)

2(1 + cos (nt) sin(nt)

(
S (t) + P (t)− n

m
sin t

)
,

n

4m

(
1− n
1 + 2n

cos((1 + 2n)t) +
n+ 1

1− 2n
cos((1− 2n)t) + 2 cos t

)
− cos2 (nt)

2(1 + cos (nt) sin(nt)

(
R (t) +Q(t) +

n

m
cos t

)
,

n

4m2
cos(2nt)− n cos2 (nt)

2m(1 + cos (nt) sin(nt)
(m− cos(nt) + sin (nt))

]
.

Proposition 4.27. Let the plane has a fixed point M = (x, y, z) and a variable
point D = (x0, y0, z0). The equation of the asymptotic plane of the ruled surface
ϕT NB (t, vT NB) is as follows:

(x− x0)
[
P (t) sin(nt)− S (t) cos(nt)− 2n sin t− n

m
sin t (sin(nt)− cos(nt))

]
+ (y − y0)

[
Q (t) sin(nt)−R (t) cos(nt) + 2n cos t+

n

m
cos t (sin(nt)− cos(nt))

]
− (z − z0)

[
n

(
2

m
(1 + cos(nt) sin(nt)) + cos(nt)− sin(nt)

)]
= 0.

Proposition 4.28. The distribution parameter ρT NB (t) of the ruled surface
ϕT NB (t, vT NB) is as follows:

ρT NB (t) = −cos(nt) (cos(nt) + 2 sin(nt))

2 (1 + cos(nt) sin(nt))
.

We have only examined four special cases here, but it is clear that countless ruled
surfaces can be obtained for different values of the real coefficients a, b, c.

5. Conclusions

In this study, ruled surfaces ϕT (t, vT ), ϕN (t, vN ), ϕB (t, vB), ϕX (t, vX), ϕNB (t, vNB),
ϕT B (t, vT B), ϕT N (t, vT N ) and ϕT NB (t, vT NB) are generated, respectively. The equa-
tions of normal vectors, striction curves, distribution parameters, tangent and as-
ymptotic planes of these surfaces are calculated. It is concluded that, the striction
curve and the base curve of the ruled surface ϕT (t, vT ) coincide and ϕT (t, vT ) is
developable; the base curve and the striction curve of the ruled surface ϕN (t, vN )
never coincide and ϕN (t, vN ) is never developable; the base curve and the striction
curve of the ruled surface ϕB (t, vB) are coincide and ϕB (t, vB) is never develobaple.
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Figure 9. Ruled surface generated by Salkowski curve and the vector
XT NB(t) for a = b = c = 1, m = 1

5
. (The right image is the transparent form

of the left image.)

Moreover, the striction curve and the base curve of the ruled surface ϕX (t, vX) co-
incide, if b = 0 and ϕX (t, vX) is developable, if b = c = 0; the base curve and the
striction curve of the ruled surface the striction curve and the base curve of the ruled
surface ϕNB (t, vNB) coincide, if b = 0 and ϕNB (t, vNB) is developable, if b = c = 0;
the striction curve and the base curve of the ruled surface ϕT B (t, vT B) coincide and
ϕT B (t, vT B) is developable; if c = 0; the striction curve and the base curve of the ruled
surface ϕT N (t, vT N ) coincide, if b = 0 and ϕT N (t, vT N ) is developable, if b = 0; the
striction curve and the base curve of the ruled surface ϕT NB (t, vT NB) never coincide
and ϕT NB (t, vT NB) is never developable. Other geometric properties of these sur-
faces, such as their fundamental forms, Gaussian and mean curvatures, singularities,
can also be examined by considering studies [11,14,16–18,26]. Similar studies can also
be done on different curves (for example anti-Salkowski curves) or in various spaces.
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