DOI QR코드

DOI QR Code

FUZZY LATTICE ORDERED GROUP BASED ON FUZZY PARTIAL ORDERING RELATION

  • Received : 2023.09.24
  • Accepted : 2024.04.26
  • Published : 2024.06.30

Abstract

In this paper, we introduce the concept of a fuzzy lattice ordered group, which is based on a fuzzy lattice that Chon developed in his paper "Fuzzy Partial Order Relations and Fuzzy Lattice". We will also discuss fuzzy lattice-ordered groups in detail, provide several results that are analogous to the classical theory of lattice-ordered groups, and characterize the relationship between a fuzzy lattice-ordered group using its level set and support. Moreover, we define the concepts of fl-subgroups, quotients, and cosets of fl-groups and obtain some fundamental results for these fuzzy algebraic structures.

Keywords

Acknowledgement

This work was supported by a research grant from Arba Minch University.

References

  1. Mahmoud Bakhshi, On fuzzy convex lattice-ordered subgroups, Iranian Journal of Fuzzy Systems, 10 (3) (2013), 159-172. https://www.sid.ir/EN/VEWSSID/J_pdf/90820130310.pdf https://doi.org/10.pdf
  2. Garrett Birkhoff, Lattice theory, volume 25, American Mathematical Soc., 1940. http://dx.doi.org/10.2307/2268183
  3. Garrett Birkhoff, Lattice-ordered groups, The Annals of Mathematics, 43 (2) (1942), 298-331. http://dx.doi.org/10.2307/1968871
  4. Inheung Chon, Fuzzy partial order relations and fuzzy lattices, Korean Journal of Mathematics 17 (4) (2009), 361-374. https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE08985027
  5. M. R. Darnell, Theory of lattice-ordered groups, volume 1. Marcel Dekker, 1995.
  6. Parimi Radha, Krishna Kishore and Dawit Cherinet Kifetew, Properties of generalised lattice ordered groups, (IJCSAM) International Journal of Computing Science and Applied Mathematics 7 (1) (2021), 25-27. http://dx.doi.org/10.12962/j24775401.v7i1.7778
  7. Valerii Matveevich Kopytov and N Ya Medvedev, The theory of lattice-ordered groups, volume 307. Springer Science & Business Media, 2013. https://books.google.com/books?hl=en&lr=&id=oDXyCAAAQBAJ&oi=fnd&pg=PR9&dq=The+theory+of+lattice-ordered+groups&ots=r9VnoM9PL5&sig=QHr2b4-CdZKv2WeeirrPnkRziwI
  8. Sileshe Gone Korma, Radhakrishna Kishore Parimi, and Dawit Chernet Kifetew, Homomorphism and isomorphism theorems on fuzzy lattices, Research in Mathematics 10 (1) (2023), 2255411. http://dx.doi.org/10.1080/27684830.2023.2255411
  9. Ivan Mezzomo, Benjamin C Bedregal, and Regivan HN Santiago, Types of fuzzy ideals in fuzzy lattices, Journal of Intelligent & Fuzzy Systems 28 (2) (2015), 929-945. http://dx.doi.org/10.3233/ifs-141374
  10. Radha Krishna Kishore Parimi, Generalised lattice ordered groups (gl-groups), International Journal of Algebra 7 (2) (2013), 63-68. http://dx.doi.org/10.12988/ija.2013.13006
  11. Ursala Paul and Paul Isaac, Fuzzy lattice ordered g-modules, International Journal of Fuzzy System Applications (IJFSA) 8 (3) (2019), 94-107. http://dx.doi.org/10.4018/ijfsa.2019070104
  12. GSVS Saibaba, L-fuzzy prime spectrum of l-groups, Annals of Fuzzy Mathematics and Informatics 12 (2) (2016), 175-191. http://www.afmi.or.kr/articles_in_%20press/2016-02/AFMI-H-151116-2/AFMI-H-151116-2.pdf
  13. G.S.V.Satya Saibaba, Fuzzy lattice ordered groups, Southeast Asian Bulletin of Mathematics 32 (2008), 749-766. https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=01292021&AN=35706354&h=1%2BUnC6lPvkar%2FkiBIWadtcsKSrwZ6ooQyKY%2BWNZqjZWzuXrHumyHOI0jiZ7kiszdM6qP3hHZOoPvTuNyx3FFfA%3D%3D&crl=c
  14. G.S.V.Satya Saibaba, Fuzzy convex sub l-groups, Annals of Fuzzy Mathematics and Informatics 11 (2016), 989-1001. http://www.afmi.or.kr/papers/2016/Vol-11_No-06/PDF/AFMI-11-6(989-1001)-H-151116-1R1.pdf 1001)-H-151116-1R1.pdf
  15. Branimir Seselja, Andreja Tepavcevic, and Mirna Udovicic, Fuzzy ordered structures and fuzzy lattice ordered groups, Journal of Intelligent & Fuzzy Systems 27 (3) (2014), 1119-1127. http://dx.doi.org/10.3233/ifs-131075
  16. Stuart A Steinberg, Lattice-ordered rings and modules, volume 1. Springer, 2010. http://dx.doi.org/10.1007/978-1-4419-1721-8
  17. J Vimala, Fuzzy lattice ordered group, International Journal of Scientific and Engineering Research 5 (9) (2014), 58-60. https://www.researchgate.net/profile/Drvimala-J/publication/281926982_Fuzzy_Lattice_Ordered_Group/links/5622688608aea35f2681cd03/Fuzzy-Lattice-Ordered-Group.pdf
  18. Lotfi A Zadeh, Fuzzy sets, Information and Control 8 (2) (1965), 338-353. http://dx.doi.org/10.1016/s0019-9958(65)90241-x
  19. Lotfi A Zadeh, Similarity relations and fuzzy orderings, Information sciences 3 (2) (1971), 177-200. http://dx.doi.org/10.1016/s0020-0255(71)80005-1