DOI QR코드

DOI QR Code

Improving the Three-Dimensional Printability of Potato Starch Loaded onto Food Ink

  • Yourim Oh (Department of Food Science and Biotechnology, Ewha Womans University) ;
  • Seungmin Lee (Department of Food Science and Biotechnology, Ewha Womans University) ;
  • Nam Keun Lee (Department of Food Science and Biotechnology, Ewha Womans University) ;
  • Jin-Kyu Rhee (Department of Food Science and Biotechnology, Ewha Womans University)
  • 투고 : 2023.11.24
  • 심사 : 2024.01.24
  • 발행 : 2024.04.28

초록

This study focuses on improving the 3D printability of pea protein with the help of food inks designed for jet-type 3D printers. Initially, the food ink base was formulated using nanocellulose-alginate with a gradient of native potato starch and its 3D printability was evaluated. The 3D-printed structures using only candidates for the food ink base formulated with or without potato starch exhibited dimensional accuracy exceeding 95% on both the X and Y axes. However, the accuracy of stacking on the Z-axis was significantly affected by the ink composition. Food ink with 1% potato starch closely matched the CAD design, with an accuracy of approximately 99% on the Z-axis. Potato starch enhanced the stacking of 3D-printed structures by improving the electrostatic repulsion, viscoelasticity, and thixotropic behavior of the food ink base. The 3D printability of pea protein was evaluated using the selected food ink base, showing a 46% improvement in dimensional accuracy on the Z-axis compared to the control group printed with a food ink base lacking potato starch. These findings suggest that starch can serve as an additive support for high-resolution 3D jet-type printing of food ink material.

키워드

과제정보

This research was supported in part by the 2023 Collaborative R&BD Program of The Food Industry Promotional Agency of Korea and by RP-Grant 2021 and Research Grant 2021-2022 of Ewha Womans Uinversity.

참고문헌

  1. Zhang C, Guan X, Yu S, Zhou J, Chen J. 2022. Production of meat alternatives using live cells, cultures and plant proteins.Curr. Opin. Food Sci. 43: 43-52.
  2. de Oliveira Padilha LG, Malek L, Umberger WJ. 2022. Consumers' attitudes towards lab-grown meat, conventionally raised meat and plant-based protein alternatives. Food Qual. Prefer. 99: 104573.
  3. Ramachandraiah K. 2021. Potential development of sustainable 3D-printed meat analogues: a review. Sustainability 13: 938.
  4. Buhler JM, Schlangen M, Moller AC, Bruins ME, van der Goot AJ. 2022. Starch in plant-based meat replacers: a new approach to using endogenous starch from cereals and legumes. Starch-Starke. 74: 2100157.
  5. Xia Y, Qian J, Zhao Y, Zheng B, Wei K, Peng B, et al. 2022. Effects of food components and processing parameters on plant-based meat texture formation and evaluation methods. J. Texture Stud. 54: 394-409.
  6. Wen Y, Chao C, Che QT, Kim HW, Park HJ. 2023. Development of plant-based meat analogs using 3D printing: status and opportunities. Trends Food Sci. Technol. 132: 76-92.
  7. Singh M, Trivedi N, Enamala MK, Kuppam C, Parikh P, Nikolova MP, et al. 2021. Plant-based meat analogue (PBMA) as a sustainable food: a concise review. Eur. Food Res. Technol. 247: 2499-2526.
  8. Liu Z, Zhang M, Bhandari B, Wang Y. 2017. 3D printing: printing precision and application in food sector. Trends Food Sci. Technol. 69: 83-94.
  9. Dick A, Bhandari B, Prakash S. 2019. Post-processing feasibility of composite-layer 3D printed beef. Meat Sci. 153: 9-18.
  10. Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C. 2019. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manufact. Technol. 102: 2877-2889.
  11. Engmann J, Mackley M. 2006. Semi-solid processing of chocolate and cocoa butter: modelling rheology and microstructure changes during extrusion. Food Bioprod. Processing 84: 102-108.
  12. Lanaro M, Forrestal DP, Scheurer S, Slinger DJ, Liao S, Powell SK, et al. 2017. 3D printing complex chocolate objects: platform design, optimization and evaluation. J. Food Eng. 215: 13-22.
  13. Le Tohic, O'Sullivan CJJ, Drapala KP, Chartrin V, Chan T, Morrison AP, et al. 2018. Effect of 3D printing on the structure and textural properties of processed cheese. J. Food Eng. 220: 56-64.
  14. Guo Y, Patanwala HS, Bognet B, Ma AW. 2017. Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyping J. 23: 562-576.
  15. Kim YK, Park JA, Yoon WH, Kim J, Jung S. 2016. Drop-on-demand inkjet-based cell printing with 30-㎛ nozzle diameter for cell-level accuracy. Biomicrofluidics 10: 064110.
  16. De France KJ, Hoare T, Cranston ED. 2017. Review of hydrogels and aerogels containing nanocellulose.Chem. Mater. 29: 4609-4631.
  17. Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P. 2015. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16: 1489-1496.
  18. Sun J, Peng Z, Zhou W, Fuh JY, Hong GS, Chiu A. 2015. A review on 3D printing for customized food fabrication. Procedia Manufact. 1: 308-319.
  19. Olmos-Juste R, Alonso-Lerma B, Perez-Jimenez R, Gabilondo N, Eceiza A. 2021. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Carbohydr. Polym. 264: 118026.
  20. Graham AD, Olof SN, Burke MJ, Armstrong JP, Mikhailova EA, Nicholson JG, et al. 2017. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci. Rep. 7: 7004.
  21. Ma Y, Zhang L. 2022. Formulated food inks for extrusion-based 3D printing of personalized foods: a mini review. Curr. Opin. Food Sci. 44: 100803.
  22. Derossi A, Caporizzi R, Oral M, Severini C. 2020. Analyzing the effects of 3D printing process per se on the microstructure and mechanical properties of cereal food products. Innov. Food Sci. Emerg. Technol. 66: 102531.
  23. Lv Y, Lv W, Li G, Zhong Y. 2023. The research progress of physical regulation techniques in 3D food printing. Trends Food Sci. Technol. 133: 231-243.
  24. Ma Y, Potappel J, Schutyser MA, Boom RM, Zhang L. 2023. Quantitative analysis of 3D food printing layer extrusion accuracy: contextualizing automated image analysis with human evaluations: quantifying 3D food printing accuracy. Curr. Res. Food Sci. 6: 100511.
  25. Kim HW, Lee IJ, Park SM, Lee JH, Nguyen MH, Park HJ. 2019. Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough. LWT 101: 69-75.
  26. Pereira T, Barroso S, Gil MM. 2021. Food texture design by 3D printing: a review. Foods 10: 320.
  27. Totosaus A. 2009. The use of potato starch in meat products. Food 3: 102-108.
  28. Agunbiade AO, Song L, Agunbiade OJ, Ofoedu CE, Chacha JS, Duguma HT, et al. 2022. Potentials of 3D extrusion-based printing in resolving food processing challenges: a perspective review. J. Food Process Eng. 45: e13996.
  29. Ma S, Liu J, Zhang Q, Lin Q, Liu R, Xing Y, et al. 2022. 3D printing performance using radio frequency electromagnetic wave modified potato starch. Innov. Food Sci. Emerg. Technol. 80: 103064.
  30. Rong L, Chen X, Shen M, Yang J, Qi X, Li Y, et al. 2023. The application of 3D printing technology on starch-based product: a review. Trends Food Sci. Technol. 134: 149-161.
  31. Venkatachalam A, Balasubramaniam A, Wilms PF, Zhang L, Schutyser MA. 2023. Impact of varying macronutrient composition on the printability of pea-based inks in extrusion-based 3D food printing. Food Hydrocoll. 142: 108760.
  32. Shahbazi M, Majzoobi M, Farahnaky A. 2018. Impact of shear force on functional properties of native starch and resulting gel and film. J. Food Eng. 223: 10-21.
  33. Hidalgo-Tufino L, Adauto A, Velezmoro C. 2023. Speed shear rate impact on the properties of OSA-modified potato starch. Sci. Agropecuaria 14: 117-125.
  34. Leong YK, Ong B. 2003. Critical zeta potential and the Hamaker constant of oxides in water. Powder Technol. 134: 249-254.
  35. da Fonseca, JHL, d'Avila MA. 2021. Rheological behavior of carboxymethylcellulose and cellulose nanocrystal aqueous dispersions. Rheologica Acta 60: 497-509.
  36. Cai X, Hong Y, Gu Z, Zhang Y. 2011. The effect of electrostatic interactions on pasting properties of potato starch/xanthan gum combinations. Food Res. Int. 44: 3079-3086.
  37. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. 2003. Physico-chemical stability of colloidal lipid particles. Biomaterials 24: 4283-4300.
  38. Abka-Khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. 2022. Structures, properties and applications of alginates. Mar. Drugs 20 364.
  39. Zoppe JO, Johansson LS, Seppala J. 2015. Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media. Carbohydr. Polym. 126: 23-31.
  40. Bertoft E. 2017. Understanding starch structure: recent progress. Agronomy 7: 56.
  41. Hoover R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr. Polym. 45: 253-267.
  42. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10: 57.
  43. Stetefeld J, McKenna SA, Patel TR. 2016. Dynamic light scattering: a practical guide and applications in biomedical sciences.Biophys. Rev. 8: 409-427.
  44. Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, et al. 2023. Structural, rheological, and gelling characteristics of starch-based materials in context to 3D food printing applications in precision nutrition. Compr. Rev. Food Sci. Food Saf. 22: 4217-4241.
  45. Campos P, Albuquerque A, Angelica R, Paz S. 2021. FTIR spectral signatures of amazon inorganic phosphates: igneous, weathering, and biogenetic origin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 251: 119476.
  46. Altayan MM, Al Darouich T, Karabet F. 2017. On the plasticization process of potato starch: preparation and characterization. Food Biophys. 12: 397-403.
  47. Li Z, Zhu L, Xie X, Zhou M, Fu C, Chen S. 2023. High-hardness, water-stable, and UV-resistant conductive coatings based on waterborne pedot: PSS/epoxy/(KH560/SiO2) composite. J. Compos. Sci. 7: 51.
  48. Nejneru C, Cimpoesu R, Vizureanu P, Epure EL, Perju MC, Lupescu sC. 2023. Study on the thermal fatigue effect of carboxymethylcellulose solution media dissolved in water as a quenching cooling medium. Appl. Sci. 13: 6021.
  49. Feng J, Gao Y, Zhang F, Ma M, Gu Y, Liu Z, et al. 2022. Effects of organic binder on rheological behaviors and screen-printing performance of silver pastes for LTCC applications. J. Mater. Sci. : Mater. Electron. 33: 10774-10784.
  50. del-Mazo-Barbara L, Ginebra MP. 2021. Rheological characterisation of ceramic inks for 3D direct ink writing: a review. J. Eur. Ceramic Soc. 41: 18-33.
  51. Lee YK, Jung SK, Chang YH. 2020. Rheological properties of a neutral polysaccharide extracted from maca (Lepidium meyenii Walp.) roots with prebiotic and anti-inflammatory activities. Int. J. Biol. Macromol. 152: 757-765.
  52. Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. 2021. Starch-based food matrices containing protein: recent understanding of morphology, structure, and properties. Trends Food Sci. Technol. 114: 212-231.
  53. Liu S, Xiao Y, Shen M, Zhang X, Wang W, Xie J. 2019. Effect of sodium carbonate on the gelation, rheology, texture and structural properties of maize starch-Mesona chinensis polysaccharide gel. Food Hydrocoll. 87: 943-951.
  54. Marani D, Gadea C, Hjelm J, Hjalmarsson P, Wandel M, Kiebach R. 2015. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks. J. Eur. Ceramic Soc. 35: 1495-1504.
  55. Cui Y, Li C, Guo Y, Liu X, Zhu F, Liu Z, et al. 2022. Rheological & 3D printing properties of potato starch composite gels. J. Food Eng. 313: 110756.
  56. He C, Zhang M, Fang Z. 2020. 3D printing of food: pretreatment and post-treatment of materials.Criti. Rev. Food Sci. Nutr. 60: 2379-2392.
  57. Sun N, Liang Y, Yu B, Tan C, Cui B. 2016. Interaction of starch and casein. Food Hydrocoll. 60: 572-579.
  58. Wang Y, Bai C, McClements DJ, Xu X, Sun Q, Jiao B, et al. 2023. Improvement of 3D printing performance of pea protein isolate Pickering emulsion gels by regulating electrostatic interaction between protein and polysaccharide. Food Hydrocoll. 145: 109097.
  59. Wang W, Chen W, Yang H, Cui M. 2017. Textural and rheological properties of potato starch as affected by amino acids. Int. Food Prop. 20(sup3): S3123-S3134.
  60. Lu Z, He J, Zhang Y, Bing D. 2020. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 60: 2593-2605.
  61. Chuanxing F, Qi W, Hui L, Quancheng Z, Wang M. 2018. Effects of pea protein on the properties of potato starch-based 3D printing materials. Int. J. Food Eng. 14: 20170297.