DOI QR코드

DOI QR Code

A Narrative Review on the Advance of Probiotics to Metabiotics

  • Hye Ji Jang (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Na-Kyoung Lee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Hyun-Dong Paik (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • 투고 : 2023.11.16
  • 심사 : 2024.01.18
  • 발행 : 2024.03.28

초록

Recently, the term metabiotics has emerged as a new concept of probiotics. This concept entails combining existing probiotic components with metabolic by-products improve specific physiological functionalities. Representative ingredients of these metabiotics include short-chain fatty acids (SCFAs), bacteriocins, polysaccharides, and peptides. The new concept is highly regarded as it complements the side effects of existing probiotics and is safe and easy to administer. Known health functions of metabiotics are mainly immune regulation, anti-inflammatory, anticancer, and brain-neurological health. Research has been actively conducted on the health benefits related to the composition of intestinal microorganisms. Among them, the focus has been on brain neurological health, which requires extensive research. This study showed that neurological disorders, such as depression, anxiety, autism spectrum disorder, Alzheimer's disease, and Parkinson's disease, can be treated and prevented according to the gut-brain axis theory by changing the intestinal microflora. In addition, various studies are being conducted on the immunomodulatory and anticancer effects of substances related to metabiotics of the microbiome. In particular, its efficacy is expected to be confirmed through human studies on various cancers. Therefore, developing various health functional effects of the next-generation probiotics such as metabiotics to prevent or treatment of various diseases is anticipated.

키워드

과제정보

This research was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (#321035-5).

참고문헌

  1. Rasika DMD, Vidanarachchi JK, Luiz SF, Azeredo DRP, Cruz AG, Ranadheera CS. 2021. Probiotic delivery through non-dairy plant-based food matrices. Agriculture 11: 599. 
  2. Kim KT, Yang SJ, Paik HD. 2021. Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immune-enhancing activities. Food Sci. Biotechnol. 30: 257-265.  https://doi.org/10.1007/s10068-020-00853-0
  3. Lu K, Dong S, Wu X, Jin R. 2021. Probiotics in cancer. Front. Oncol. 11: 638148. 
  4. Sotoudegan F, Daniali M, Hassani S, Nikfar S, Abdollahi M. 2019. Reappraisal of probiotics' safety in human. Food Chem. Toxicol. 129: 22-29.  https://doi.org/10.1016/j.fct.2019.04.032
  5. Lee NK, Paik HD. 2021. Prophylactic effects of probiotics on respiratory viruses including COVID-19: a review. Food Sci. Biotechnol. 30: 773-781.  https://doi.org/10.1007/s10068-021-00913-z
  6. Hong SW. 2020. Postbiotics: next-generation of lactic acid bacteria. Livest. Food Sci. Ind. 6: 11-19. 
  7. Oleskin AV, Shenderov BA. 2019. Probiotics and psychobiotics: the role of microbial neurochemicals. Probiotics Antimicrob. Proteins 11: 1071-1085.  https://doi.org/10.1007/s12602-019-09583-0
  8. Pihurov M, Pacularu-Burada B, Cotarlet M, Vasile MA, Bahrim GE. 2021. Novel insight for metabiotics production by using artisanal probiotic cultures. Microorganisms 9: 2184. 
  9. Sharma M, Shukla G. 2016. Metabiotics: one step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Front. Microbiol. 7: 1940. 
  10. Kapoor B, Singh A, Gulati M, Singh SK, Rani P, Alzahrani Q, et al. 2022. Orchestration of obesolytic activity of microbiome: metabiotics at centre stage. Curr. Drug Metab. 23: 90-98.  https://doi.org/10.2174/1389200223666220211095024
  11. Zommiti M, Feuilloley MGJ, Connil N. 2020. Update of probiotics in human world: a nonstop source of benefactions till the end of time. Microorganisms 8: 1907. 
  12. Son SH, Yang SJ, Jeon HL, Yu HS, Lee NK, Park YS, et al. 2018. Antioxidant and immunostimulatory effect or potential probiotic Lactobacillus paraplantarum SC61 isolated from korean traditional fermented food, jangajii. Microb. Pathog. 125: 486-492.  https://doi.org/10.1016/j.micpath.2018.10.018
  13. Lee NK, Kim WS, Paik HD. 2019. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 28: 1297-1305.  https://doi.org/10.1007/s10068-019-00691-9
  14. Bottari B, Castellone V, Neviani E. 2021. Probiotics and COVID-19. Int. J. Food Sci. Nutr. 72: 293-299.  https://doi.org/10.1080/09637486.2020.1807475
  15. Jeon HL, Yang SJ, Son SH, Kim WS, Lee NK, Paik HD. 2018. Evaluation of probiotic Bacillus subtilis P229 isolated from cheonggukjang and its application in soybean fermentation. LWT- Food Sci. Technol. 97: 94-99.  https://doi.org/10.1016/j.lwt.2018.06.054
  16. Slizewska K, Markowiak-Kopec P, Slizewska W. 2021. The role of probiotics in cancer prevention. Cancers 13: 20. 
  17. Stavropoulou E, Bezirtzoglou E. 2020. Probiotics in medicine: a long debate. Front. Immunol. 11: 2192. 
  18. Singh K, Rao A. 2021. Probiotics: a potential immunomodulation in COVID-19 infection management. Nutr. Res. 87: 1-12.  https://doi.org/10.1016/j.nutres.2020.12.014
  19. Pique N, Berlanga M, Minana-Galbis D. 2019. Health benefits of heat-killed (Tyndallized) probiotics: an overview. Int. J. Mol. Sci. 20: 2534. 
  20. Zuo F, Marcotte H. 2021. Advantage mechanistic understanding and bioengineering of probiotic lactobacilli and bifidobacteria by genome editing. Curr. Opin. Biotechnol. 70: 75-82.  https://doi.org/10.1016/j.copbio.2020.12.015
  21. Guan Q, Xiong T, Xie M. 2021. Influence of probiotic fermented fruit and vegetables on human health and the related industrial development trend. Engineering 7: 212-218.  https://doi.org/10.1016/j.eng.2020.03.018
  22. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, et al. 2013. Health benefits of probiotics: a review. ISRN Nutr. 2013: 481651. 
  23. De Simone C. 2019. The unregulated probiotic market. Clin. Gastroenterol. Hepatol. 17: 809-817.  https://doi.org/10.1016/j.cgh.2018.01.018
  24. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401-1412.  https://doi.org/10.1093/jn/125.6.1401
  25. Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK. 2022. Probiotics, prebiotics and synbiotics: safe options for next-generation therapeutics. Appl. Microbiol. Biotechnol. 106: 505-521.  https://doi.org/10.1007/s00253-021-11646-8
  26. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. 2017. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14: 491-502.  https://doi.org/10.1038/nrgastro.2017.75
  27. Oniszczuk A, Oniszczuk T, Gancarz M, Szymanska J. 2021. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases. Molecules 26: 1172. 
  28. Farias DP, Araujo FF, Neri-Numa IA, Pastore GM. 2019. Prebiotics: trends in food, health and technological applications. Trends Food Sci. Technol. 93: 23-35.  https://doi.org/10.1016/j.tifs.2019.09.004
  29. Mohanty D, Misra S, Mohapatra S, Sahu PS. 2018. Prebiotics and synbiotics: recent concepts in nutrition. Food Biosci. 26: 152-160.  https://doi.org/10.1016/j.fbio.2018.10.008
  30. Davila I, Gullon B, Alonso JL, Labidi J, Gullon P. 2019. Vine shoots as new source for the manufacture of prebiotic oligosaccharides. Carbohydr. Polym. 207: 34-43.  https://doi.org/10.1016/j.carbpol.2018.11.065
  31. Plamada D, Vodnar DC. 2021. Polyphenols-Gut microbiota interrelationship: a transition to a new generation of prebiotics. Nutrients 14: 137. 
  32. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. 2019. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16: 605-616.  https://doi.org/10.1038/s41575-019-0173-3
  33. Martyniak A, Medynska-Przeczek A, Wedrychowicz A, Skoczen S, Tomasik PJ. 2021. Prebiotics, probiotics, synbiotics, parabiotics and postbiotics compounds in IBD. Biomolecules 11: 1903. 
  34. Nunez-Sanchez M, Herisson FM, Cluzel GL, Caplice NM. 2021. Metabiolic syndrome and symbiotic targeting of the gut microbiome. Curr. Opin. Food Sci. 41: 60-69.  https://doi.org/10.1016/j.cofs.2021.02.014
  35. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, et al. 2020. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17: 687-701.  https://doi.org/10.1038/s41575-020-0344-2
  36. Mofid V, Izadi A, Mojtahedi SY, Khedmat L. 2020. Therapeutic and nutritional effects of symbiotic yogurts in children and adults: a clinical review. Probiotics Antimicrob. Proteins 12: 851-859.  https://doi.org/10.1007/s12602-019-09594-x
  37. Seong G, Lee S, Min YW, Jang YS, Park SY, Kim CH, et al. 2020. Effect of symbiotic containing Lactobacillus paracasei and Opuntia humifusa on a murine model of irritable bowel syndrome. Nutrients 12: 3205. 
  38. Sharma N, Kang DK, Paik HD, Park YS. 2023. Beyond probiotics: a narrative review on an era of revolution. Food Sci. Biotechnol. 32: 413-421.  https://doi.org/10.1007/s10068-022-01212-x
  39. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. 2021. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18: 649-667.  https://doi.org/10.1038/s41575-021-00440-6
  40. Wegh CAM, Geerlings S, Knol J, Roeselers G, Belzer C. 2019. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci. 20: 4673. 
  41. Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, et al. 2020. Paraprobiotics and postbiotics of probiotic Lactobacilli their positive effects on the host and action mechanisms: a review. Front. Nutr. 7: 570344. 
  42. Rather IA, Choi SB, Kamli MR, Hakeem KR, Sabir JSM, Park YH, et al. 2021. Potential adjuvant therapeutic effect of Lactobacillus plantarum Probio-88 postbiotics against SARS-COV-2. Vaccines 9: 10. 
  43. Xavier-Santos D, Padilha M, Fabiano GA, Vinderola G, Cruz AG, Sivieri K, et al. 2022. Evidences and perspectives of the use of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention and treatment of COVID-19: a bibliometric analysis and systematic review. Trends Food Sci. Technol. 120: 174-192.  https://doi.org/10.1016/j.tifs.2021.12.033
  44. Nataraj BH, Shivanna SK, Rao P, Nagpal R, Behare PV. 2021. Evolotionary concepts in the functional biotics arena: a mini-review. Food Sci. Biotechnol. 30: 487-496.  https://doi.org/10.1007/s10068-020-00818-3
  45. Biswas I, Das Mohapatra PK. 2023. Recent advancement in metabiotics: a consortium with bioactive molecules after fermentation by probiotic bacteria with multidisciplinary application potential and future solution in health sector. Bioresour. Technol. 23: 101583. 
  46. Shenderov BA. 2013. Metabiotics: novel idea or natural development of probiotic conception. Microb. Ecol. Health Dis. 24: 20399. 
  47. Singhal B, Chaudhary N. 2021. Metabiotics as functional metabolites of probiotics: an emerging concept and its potential application in food and health, pp. 207-236. In Verma DK, Patel AR, Sandhu KS, Baldi A, Garcia S (eds.), Biotechnical processing in the food industry: New methods, techniques, and applications, 1st Ed. Apple Academic Press, Palm Bay, FL. 
  48. Dalton A, Mermier C, Zuhl M. 2019. Exercise influence on the microbiome-gut-brain axis. Gut Microbes 10: 555-568.  https://doi.org/10.1080/19490976.2018.1562268
  49. Dahiya D, Nigam PS. 2022. Probiotics, prebiotics, synbiotics, and fermented food as potential biotics in nutrition improving health via microbiome-gut brain axis. Fermentation 8: 303. 
  50. Bauer KC, Rees T, Finlay BB. 2019. The gut microbiota-brain axis expands neurologic function: a nervous rapport. BioEssays 41: 1800268. 
  51. Singh A, Vishwakarma V, Singhal B. 2018. Metabiotics: the functional metabolic signatures of probiotics: current state-of-art and future research priorities. Adv. Biosci. Biotechnol. 9: 147-189.  https://doi.org/10.4236/abb.2018.94012
  52. Caputi V, Giron MC. 2018. Microbiome-gut brain axis and toll-like receptors in Parkinson's disease. Int. J. Mol. Sci. 19: 1689. 
  53. Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. 2022. Probiotics: potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol. Ther. 231: 107978. 
  54. Suda K, Matsuda K. 2022. How microbes affect depression: underlying mechanisms via the gut-brain axis and the modulating role of probiotics. Int. J. Mol. Sci. 23: 1172. 
  55. Li Q, Zhou JM. 2016. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 324: 131-139.  https://doi.org/10.1016/j.neuroscience.2016.03.013
  56. Mayer EA, Tillisch K, Gupta A. 2015. Gut/brain axis and the microbiota. J. Clin. Invest. 125: 926-938.  https://doi.org/10.1172/JCI76304
  57. Varela-Trinidad GU, Dominguez-Diaz C, Solorzano-Castanedo K, Iniguez-Gutierrez L, Hernandez-Flores TJ, Fafutis-Morris M. 2022. Probiotics: protecting our health from the gut. Microorganisms 10: 1428. 
  58. Jach ME, Serefko A, Szopa A, Sajnaga E, Golczyk H, Santos LS, et al. 2023. The role of probiotics and their metabiotics in the treatment of depression. Molecules 28: 3213. 
  59. Chen Y, Xu J, Chen Y. 2021. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 13: 2099. 
  60. Zou R, Tian P, Xu M, Zhe H, Zhao J, Zhang H, et al. 2021.Psychobiotics as a novel strategy for alleviating anxiety and depression. J. Funct. Food. 86: 104718. 
  61. Szandruk-Bender M, Wiatrak B, Szelag A. 2022. The risk of developing Alzheimer's disease and Parkinson's disease in patients with inflammatory bowel disease: a meta-analysis. J. Clin. Med. 11: 3704. 
  62. Oroojzadeh P, Bostanabad SY, Lorfi H. 2022. Psychobiotics: the influence of gut microbiota the gut-brain axis in neurological disorders. J. Mol. Neurosci. 72: 1952-1964.  https://doi.org/10.1007/s12031-022-02053-3
  63. Chen J, Chen DF, Cho KS. 2023. The role of gut microbiota in glaucoma progression and other retinal diseases. Am. J. Pathol. 193: 1622-1668.  https://doi.org/10.1016/j.ajpath.2023.08.006
  64. Beck BR, Park GS, Jeong DY, Lee YH, Im S, Song WH, et al. 2019. Multidisciplinary and comparative investigations of potential psychobiotic effects of Lactobacillus strains isolated from newborns and their impact on gut microbiota and ileal transcriptome in a healthy murine model. Front. Cell. Infect. Microbiol. 9: 269. 
  65. Dasriya VLD, Samtiya M, Dhewa T, Puniya M, Kumar S, Ranveer S, et al. 2022. Etiology and management of Alzheimer's disease: potential role of gut microbiota modulation with probiotics supplementation. J. Food Biochem. 46: e14043. 
  66. Tans AH, Lim SY, Lang AE. 2022. The microbiome-gut-brain axis in Parkinson disease-from basic research to the clinic. Nat. Rev. Neurol. 18: 476-495.  https://doi.org/10.1038/s41582-022-00681-2
  67. Chu C, Yu L, Li Y, Guo H, Zhai Q, Chen W, et al. 2023. Meta-analysis of randomized controlled trials of the effects of probiotics in Parkinson's disease. Food Funct. 14: 3406-3422. 
  68. Metta V, Leta V, Mrudula KR, Prashanth LK, Goyal V, Borgohain R, et al. 2022. Gastrointestinal dysfunction in Parkinson's disease: molecular pathology and implication of gut microbiome, probiotics, and fecal microbiota transplantation. J. Neurol. 269: 1154-1163.  https://doi.org/10.1007/s00415-021-10567-w
  69. Hsieh TH, Kuo CW, Hsieh KH. 2020. Probiotics alleviate the progressive deterioration of motor functions in a mouse model of Parkinson's disease. Brain Sci. 10: 206. 
  70. Zheng SY, Li HZ, Xu RC, Miao WT, Dai MY, Ding ST, et al. 2021. Potential roles of gut-microbiota and microbial metabolites in Parkinson's disease. Ageing Res. Rev. 69: 101347. 
  71. Sharma M, Shukla G. 2016. Metabiotics: one step ahead of probiotics; an insight into mechanism involved in anticancerous effect in colorectal cancer. Front. Microbiol. 7: 1940. 
  72. Matsumoto S, Hara T, Nagaoka M, Mike A, Mitsuyama K, Sako T, et al. 2008. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel diseases and colitis-associated cancer. Immunology 128: e170-e180.  https://doi.org/10.1111/j.1365-2567.2008.02942.x
  73. Sharma M, Shukla G. 2020. Administration of metabiotics extracted from probiotic Lactobacillus rhamnosus MD14 inhibit experimental colorectal carcinogenesis by targeting Wnt/β-Catenin pathway. Front. Oncol. 10: 746. 
  74. Kim HJ, An J, Ha EM. 2022. Lactobacillus plantarum-derived metabolites sensitize the tumor-suppressive effects of butyrate by regulating the functional expression of SMCT1 in 5-FU-resistant colorectal cancer cells. J. Microbiol. 60: 100-117.  https://doi.org/10.1007/s12275-022-1533-1
  75. Zanello G, Berri M, Dupont J, Sizaret PY, Dlnca R, Salmon H, et al. 2011. Saccharomyces cerevisiae modulates immune gene expression and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS One 6: e18573. 
  76. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY. 2014. Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells. Anaerobe 28: 29-36. https://doi.org/10.1016/j.anaerobe.2014.04.012