DOI QR코드

DOI QR Code

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan (College of Life Sciences, Jiangxi Science and Technology Normal University) ;
  • Yi tong Shang (College of Life Sciences, Jiangxi Science and Technology Normal University) ;
  • Li hong Wang (College of Life Sciences, Jiangxi Science and Technology Normal University) ;
  • Xue qin Tian (College of Life Sciences, Jiangxi Science and Technology Normal University) ;
  • Van-Tuan Tran (VNU University of Science) ;
  • Li hua Yao (College of Life Sciences, Jiangxi Science and Technology Normal University) ;
  • Bin Zeng (Shenzhen Technology University) ;
  • Zhi hong Hu (College of Life Sciences, Jiangxi Science and Technology Normal University)
  • Received : 2023.12.06
  • Accepted : 2024.03.08
  • Published : 2024.05.28

Abstract

Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (NSFC Grant NO.32260009 and 31960193), and "Double Thousand Plan" in Jiangxi Province (jxsq2019201011).

References

  1. Das SK, Masuda M, Sakurai A, Sakakibara M. 2010. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia. 81: 961-968. https://doi.org/10.1016/j.fitote.2010.07.010
  2. Gu YX, Wang ZS, Li SX, Yuan QS. 2007. Effect of multiple factors on accumulation of nucleosides and bases in Cordyceps militaris. Food Chem. 102: 1304-1309. https://doi.org/10.1016/j.foodchem.2006.07.018
  3. Ng TB, Wang HX. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57: 1509-1519.
  4. Yang L, Li G, Chai Z, Gong Q, Guo J. 2020. Synthesis of cordycepin: current scenario and future perspectives. Fungal Genet. Biol. 143: 103431.
  5. Wang L, Yan H, Zeng B, Hu Z. 2022. Research progress on cordycepin synthesis and methods for enhancement of cordycepin production in Cordyceps militaris. Bioengineering (Basel) 9: 69.
  6. Phull AR, Ahmed M, Park HJ. 2022. Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms. Microorganisms 10: 405.
  7. Seong da B, Hong S, Muthusami S, Kim WD, Yu JR, Park WY. 2016. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur. J. Pharmacol. 771: 77-83. https://doi.org/10.1016/j.ejphar.2015.12.022
  8. Nxumalo W, Elateeq AA, Sun Y. 2020. Can Cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis? - a review. J. Ethnopharmacol. 257: 112879.
  9. Kim HO, Yun JW. 2005. A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J. Appl. Microbiol. 99: 728-738. https://doi.org/10.1111/j.1365-2672.2005.02682.x
  10. Khan MA, Tania M. 2020. Cordycepin in anticancer research: molecular mechanism of therapeutic effects. Curr. Med. Chem. 27: 983-996. https://doi.org/10.2174/0929867325666181001105749
  11. Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12: R116.
  12. Zheng Z, Huang C, Cao L, Xie C, Han R. 2011. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol. 115: 265-274. https://doi.org/10.1016/j.funbio.2010.12.011
  13. de Bekker C, Wiebenga A, Aguilar G, Wosten HA. 2009. An enzyme cocktail for efficient protoplast formation in Aspergillus niger. J. Microbiol. Methods 76: 305-306. https://doi.org/10.1016/j.mimet.2008.11.001
  14. Ruiz-Diez B. 2002. Strategies for the transformation of filamentous fungi. J. Appl. Microbiol. 92: 189-195. https://doi.org/10.1046/j.1365-2672.2002.01516.x
  15. Schmoll M, Zeilinger S. 2021. Resistance marker- and gene gun-mediated transformation of Trichoderma reesei. Methods Mol. Biol. 2234: 55-62. https://doi.org/10.1007/978-1-0716-1048-0_4
  16. Li D, Tang Y, Lin J, Cai W. 2017. Methods for genetic transformation of filamentous fungi. Microb. Cell Fact. 16: 168.
  17. Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J. 2013. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol. Adv. 31: 1562-1574. https://doi.org/10.1016/j.biotechadv.2013.08.005
  18. Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, et al. 2017. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol. Biotechnol. 4: 6.
  19. Lou H, Zhao Y, Zhao R, Ye Z, Lin J, Guo L, et al. 2021. Screening and functional verification of selectable marker genes for Cordyceps militaris. J. Food Qual. 2021. ID 6687768.
  20. Weidner G, d'Enfert C, Koch A, Mol PC, Brakhage AA. 1998. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5'-monophosphate decarboxylase. Curr. Genet. 33: 378-385. https://doi.org/10.1007/s002940050350
  21. Skory CD, Horng JS, Pestka JJ, Linz JE. 1990. Transformation of Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine biosynthesis. Appl. Environ. Microbiol. 56: 3315-3320. https://doi.org/10.1128/aem.56.11.3315-3320.1990
  22. Nguyen KT, Ho QN, Pham TH, Phan TN, Tran VT. 2016. The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae. World J. Microbiol. Biotechnol. 32: 204.
  23. Nguyen KT, Ho QN, Do L, Mai LTD, Pham DN, Tran HTT, et al. 2017. A new and efficient approach for construction of uridine/ uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation. World J. Microbiol. Biotechnol. 33: 107.
  24. Du Y, Xie G, Yang C, Fang B, Chen H. 2014. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation. Acta Biochim. Biophys. Sin (Shanghai). 46: 477-483. https://doi.org/10.1093/abbs/gmu022
  25. Fiedler MR, Gensheimer T, Kubisch C, Meyer V. 2017. HisB as novel selection marker for gene targeting approaches in Aspergillus niger. BMC Microbiol. 17: 57.
  26. Thai HD, Nguyen BT, Nguyen VM, Nguyen QH, Tran VT. 2021. Development of a new Agrobacterium-mediated transformation system based on a dual auxotrophic approach in the filamentous fungus Aspergillus oryzae. World J. Microbiol. Biotechnol. 37: 92.
  27. Wang L, Huang H, Liu XP, Wang XM, Zeng B, Hu ZH. 2022. Construction of Agrobacterium-mediated auxotrophic strain and genetic transformation system of Cordyceps militaris. Microbiol. China. 49: 3373-3386
  28. Zhang J, Wang F, Yang Y, Wang Y, Dong C. 2020. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris. Environ. Microbiol. 22: 466-482. https://doi.org/10.1111/1462-2920.14867
  29. Jiang K, Han R. 2015. Rhf1 gene is involved in the fruiting body production of Cordyceps militaris fungus. J. Ind. Microbiol Biotechnol. 42: 1183-1196. https://doi.org/10.1007/s10295-015-1637-2
  30. Chen BX, Wei T, Ye ZW, Yun F, Kang LZ, Tang HB, et al. 2018. Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris. Front. Microbiol. 9: 1157.
  31. Wang Y, Wang R, Wang Y, Li Y, Yang RH, Gong M, et al. 2020. Diverse function and regulation of CmSnf1 in entomopathogenic fungus Cordyceps militaris. Fungal Genet. Biol. 142: 103415.
  32. Lou HW, Zhao Y, Ren CS, Zhao RY, Ye ZW, Lin JF, et al. 2021. Cloning of the ben gene and its functional identification in Cordyceps militaris. Scientia Horticulturae. 281: 109953.
  33. Yang T, Dong C. 2014. Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris. FEMS Microbiol Lett. 352: 190-197. https://doi.org/10.1111/1574-6968.12393
  34. Yang T, Guo M, Yang H, Guo S, Dong C. 2016. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl. Microbiol. Biotechnol. 100: 743-755. https://doi.org/10.1007/s00253-015-7047-6
  35. Meng G, Wang X, Liu M, Wang F, Liu Q, Dong C. 2022. Efficient CRISPR/Cas9 system based on autonomously replicating plasmid with an AMA1 sequence and precisely targeted gene deletion in the edible fungus, Cordyceps militaris. Microb. Biotechnol. 15: 2594-2606. https://doi.org/10.1111/1751-7915.14107