Acknowledgement
This work was supported by National Natural Science Foundation of China (NSFC Grant NO.32260009 and 31960193), and "Double Thousand Plan" in Jiangxi Province (jxsq2019201011).
References
- Das SK, Masuda M, Sakurai A, Sakakibara M. 2010. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia. 81: 961-968. https://doi.org/10.1016/j.fitote.2010.07.010
- Gu YX, Wang ZS, Li SX, Yuan QS. 2007. Effect of multiple factors on accumulation of nucleosides and bases in Cordyceps militaris. Food Chem. 102: 1304-1309. https://doi.org/10.1016/j.foodchem.2006.07.018
- Ng TB, Wang HX. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57: 1509-1519.
- Yang L, Li G, Chai Z, Gong Q, Guo J. 2020. Synthesis of cordycepin: current scenario and future perspectives. Fungal Genet. Biol. 143: 103431.
- Wang L, Yan H, Zeng B, Hu Z. 2022. Research progress on cordycepin synthesis and methods for enhancement of cordycepin production in Cordyceps militaris. Bioengineering (Basel) 9: 69.
- Phull AR, Ahmed M, Park HJ. 2022. Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms. Microorganisms 10: 405.
- Seong da B, Hong S, Muthusami S, Kim WD, Yu JR, Park WY. 2016. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur. J. Pharmacol. 771: 77-83. https://doi.org/10.1016/j.ejphar.2015.12.022
- Nxumalo W, Elateeq AA, Sun Y. 2020. Can Cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis? - a review. J. Ethnopharmacol. 257: 112879.
- Kim HO, Yun JW. 2005. A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J. Appl. Microbiol. 99: 728-738. https://doi.org/10.1111/j.1365-2672.2005.02682.x
- Khan MA, Tania M. 2020. Cordycepin in anticancer research: molecular mechanism of therapeutic effects. Curr. Med. Chem. 27: 983-996. https://doi.org/10.2174/0929867325666181001105749
- Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12: R116.
- Zheng Z, Huang C, Cao L, Xie C, Han R. 2011. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol. 115: 265-274. https://doi.org/10.1016/j.funbio.2010.12.011
- de Bekker C, Wiebenga A, Aguilar G, Wosten HA. 2009. An enzyme cocktail for efficient protoplast formation in Aspergillus niger. J. Microbiol. Methods 76: 305-306. https://doi.org/10.1016/j.mimet.2008.11.001
- Ruiz-Diez B. 2002. Strategies for the transformation of filamentous fungi. J. Appl. Microbiol. 92: 189-195. https://doi.org/10.1046/j.1365-2672.2002.01516.x
- Schmoll M, Zeilinger S. 2021. Resistance marker- and gene gun-mediated transformation of Trichoderma reesei. Methods Mol. Biol. 2234: 55-62. https://doi.org/10.1007/978-1-0716-1048-0_4
- Li D, Tang Y, Lin J, Cai W. 2017. Methods for genetic transformation of filamentous fungi. Microb. Cell Fact. 16: 168.
- Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J. 2013. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol. Adv. 31: 1562-1574. https://doi.org/10.1016/j.biotechadv.2013.08.005
- Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, et al. 2017. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol. Biotechnol. 4: 6.
- Lou H, Zhao Y, Zhao R, Ye Z, Lin J, Guo L, et al. 2021. Screening and functional verification of selectable marker genes for Cordyceps militaris. J. Food Qual. 2021. ID 6687768.
- Weidner G, d'Enfert C, Koch A, Mol PC, Brakhage AA. 1998. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5'-monophosphate decarboxylase. Curr. Genet. 33: 378-385. https://doi.org/10.1007/s002940050350
- Skory CD, Horng JS, Pestka JJ, Linz JE. 1990. Transformation of Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine biosynthesis. Appl. Environ. Microbiol. 56: 3315-3320. https://doi.org/10.1128/aem.56.11.3315-3320.1990
- Nguyen KT, Ho QN, Pham TH, Phan TN, Tran VT. 2016. The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae. World J. Microbiol. Biotechnol. 32: 204.
- Nguyen KT, Ho QN, Do L, Mai LTD, Pham DN, Tran HTT, et al. 2017. A new and efficient approach for construction of uridine/ uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation. World J. Microbiol. Biotechnol. 33: 107.
- Du Y, Xie G, Yang C, Fang B, Chen H. 2014. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation. Acta Biochim. Biophys. Sin (Shanghai). 46: 477-483. https://doi.org/10.1093/abbs/gmu022
- Fiedler MR, Gensheimer T, Kubisch C, Meyer V. 2017. HisB as novel selection marker for gene targeting approaches in Aspergillus niger. BMC Microbiol. 17: 57.
- Thai HD, Nguyen BT, Nguyen VM, Nguyen QH, Tran VT. 2021. Development of a new Agrobacterium-mediated transformation system based on a dual auxotrophic approach in the filamentous fungus Aspergillus oryzae. World J. Microbiol. Biotechnol. 37: 92.
- Wang L, Huang H, Liu XP, Wang XM, Zeng B, Hu ZH. 2022. Construction of Agrobacterium-mediated auxotrophic strain and genetic transformation system of Cordyceps militaris. Microbiol. China. 49: 3373-3386
- Zhang J, Wang F, Yang Y, Wang Y, Dong C. 2020. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris. Environ. Microbiol. 22: 466-482. https://doi.org/10.1111/1462-2920.14867
- Jiang K, Han R. 2015. Rhf1 gene is involved in the fruiting body production of Cordyceps militaris fungus. J. Ind. Microbiol Biotechnol. 42: 1183-1196. https://doi.org/10.1007/s10295-015-1637-2
- Chen BX, Wei T, Ye ZW, Yun F, Kang LZ, Tang HB, et al. 2018. Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris. Front. Microbiol. 9: 1157.
- Wang Y, Wang R, Wang Y, Li Y, Yang RH, Gong M, et al. 2020. Diverse function and regulation of CmSnf1 in entomopathogenic fungus Cordyceps militaris. Fungal Genet. Biol. 142: 103415.
- Lou HW, Zhao Y, Ren CS, Zhao RY, Ye ZW, Lin JF, et al. 2021. Cloning of the ben gene and its functional identification in Cordyceps militaris. Scientia Horticulturae. 281: 109953.
- Yang T, Dong C. 2014. Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris. FEMS Microbiol Lett. 352: 190-197. https://doi.org/10.1111/1574-6968.12393
- Yang T, Guo M, Yang H, Guo S, Dong C. 2016. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl. Microbiol. Biotechnol. 100: 743-755. https://doi.org/10.1007/s00253-015-7047-6
- Meng G, Wang X, Liu M, Wang F, Liu Q, Dong C. 2022. Efficient CRISPR/Cas9 system based on autonomously replicating plasmid with an AMA1 sequence and precisely targeted gene deletion in the edible fungus, Cordyceps militaris. Microb. Biotechnol. 15: 2594-2606. https://doi.org/10.1111/1751-7915.14107