DOI QR코드

DOI QR Code

In vivo Effects of Salicornia herbacea and Calystegia soldanella Extracts for Memory Improvement

  • Jiun Sang (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Seeta Poudel (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Youngseok Lee (Department of Bio and Fermentation Convergence Technology, Kookmin University)
  • Received : 2023.12.29
  • Accepted : 2024.02.26
  • Published : 2024.05.28

Abstract

The global elderly population, aged 65 and over, reached approximately 10% in 2020, and this proportion is expected to continue rising. Therefore, the prevalence of neurodegenerative diseases such as Parkinson's disease (PD), which are characterized by declining memory capabilities, is anticipated to increase. In a previous study, we successfully restored the diminished memory capabilities in a fruit fly model of PD by administering an omija extract. To identify functional ingredients that can enhance memory akin to the effects of the omija extract, we conducted screenings by administering halophyte extracts to the PD model. Halophytes are plants that thrive in high-salt environments, and given Korea's geographic proximity to the sea on three sides, it serves as an optimal hub for the utilization of these plants. Upon examining the effects of the oral administration of 12 halophyte extracts, Salicornia herbacea and Calystegia soldanella emerged as potential candidates for ameliorating memory loss in PD model flies. Moreover, our findings suggested that C. soldanella, but not S. herbacea, can mitigate oxidative stress in DJ-1β mutants.

Keywords

Acknowledgement

This work was supported by grants to Y.L. from the National Research Foundation of Korea (NRF) funded by the Korea government (MIST) (NRF-2021R1A2C1007628) and the Biomaterials Specialized Graduate Program through the Korea Environmental Industry and Technology Institute (KEITI) funded by the Ministry of Environment (MOE).

References

  1. Grinin L, Grinin A, Korotayev A. 2023. Global Aging: An Integral Problem of the Future. How to Turn a Problem into a Development Driver? pp. 117-135. Reconsidering the Limits to Growth: A Report to the Russian Association of the Club of Rome, Ed. Springer, 
  2. Poudel S, Lee Y. 2018. Impaired taste associative memory and memory enhancement by feeding omija in Parkinson's disease fly model. Mol. Cells 41: 646-652. 
  3. Menzies FM, Yenisetti SC, Min KT. 2005. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr. Biol. 15: 1578-1582.  https://doi.org/10.1016/j.cub.2005.07.036
  4. Park J, Kim SY, Cha GH, Lee SB, Kim S, Chung J. 2005. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361: 133-139.  https://doi.org/10.1016/j.gene.2005.06.040
  5. Nagakubo D, Taira T, Kitaura H, Ikeda M, Tamai K, Iguchi-Ariga SM, et al. 1997. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231: 509-513.  https://doi.org/10.1006/bbrc.1997.6132
  6. Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, Wes PD, et al. 2005. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr. Biol. 15: 1572-1577.  https://doi.org/10.1016/j.cub.2005.07.064
  7. Meulener MC, Xu K, Thomson L, Ischiropoulos H, Bonini NM. 2006. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc. Natl. Acad. Sci. USA 103: 12517-12522.  https://doi.org/10.1073/pnas.0601891103
  8. Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, et al. 2007. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc. Natl. Acad. Sci. USA 104: 14807-14812.  https://doi.org/10.1073/pnas.0703219104
  9. Hwang S, Song S, Hong YK, Choi G, Suh YS, Han SY, et al. 2013. Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genet. 9: e1003412. 
  10. Aslam R, Bostan N, Nabgha-e-Amen MM, Safdar W. 2011. A critical review on halophytes: salt tolerant plants. J. Med. Plant Res. 5: 7108-7118.  https://doi.org/10.5897/JMPRX11.009
  11. Rhee MH, Park HJ, Cho JY. 2009. Salicornia herbacea: Botanical, chemical and pharmacological review of halophyte marsh plant. J. Med. Plant Res. 3: 548-555. 
  12. Eom T, Kim IH, Kim HJ, Choi Y, Nam TJ. 2021. Calystegia soldanella extract exerts anti-oxidative and anti-inflammatory effects via the regulation of the NF-κB/Nrf-2 pathways in mouse macrophages. Antioxidants 10: 1639. 
  13. Stankovic MS, Petrovic M, Godjevac D, Stevanovic ZD. 2015. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? J. Arid Environ. 120: 26-32.  https://doi.org/10.1016/j.jaridenv.2015.04.008
  14. Shim JH. 2022. Anti-inflammatory effect of Carex scabrifolia steud. extract in RAW264.7 cells. J. Microbiol. Biotechnol. 50: 354-360.  https://doi.org/10.48022/mbl.2204.04003
  15. Najafian Y, Hamedi SS, Farshchi MK, Feyzabadi Z. 2018. Plantago major in Traditional Persian Medicine and modern phytotherapy: a narrative review. Electron. Physician 10: 6390-6399.  https://doi.org/10.19082/6390
  16. Adom MB, Taher M, Mutalabisin MF, Amri MS, Kudos MBA, Sulaiman MWAW, et al. 2017. Chemical constituents and medical benefits of Plantago major. Biomed. Pharmacother. 96: 348-360.  https://doi.org/10.1016/j.biopha.2017.09.152
  17. Samuelsen AB. 2000. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 71: 1-21.  https://doi.org/10.1016/S0378-8741(00)00212-9
  18. Lee Y, Poudel S, Kim Y, Thakur D, Montell C. 2018. Calcium taste avoidance in Drosophila. Neuron 97: 67-74. e64.  https://doi.org/10.1016/j.neuron.2017.11.038
  19. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. 2000. Correlates of sleep and waking in Drosophila melanogaster. Science 287: 1834-1837.  https://doi.org/10.1126/science.287.5459.1834
  20. Klarsfeld A, Leloup JC, Rouyer F. 2003. Circadian rhythms of locomotor activity in Drosophila. Behav. Processes 64: 161-175.  https://doi.org/10.1016/S0376-6357(03)00133-5
  21. Diegelmann S, Jansen A, Jois S, Kastenholz K, Escarcena LV, Strudthoff N, et al. 2017. The CApillary FEeder assay measures food intake in Drosophila melanogaster. J. Vis. Exp. 17: 55024. 
  22. Aryal B, Lee Y. 2019. Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Rep. 52: 250-258.  https://doi.org/10.5483/BMBRep.2019.52.4.204
  23. Damier P, Hirsch E, Agid Y, Graybiel A. 1999. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122: 1437-1448.  https://doi.org/10.1093/brain/122.8.1437
  24. Andretic R, Hirsh J. 2000. Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97: 1873-1878.  https://doi.org/10.1073/pnas.97.4.1873
  25. Gandhi S, Muqit M, Stanyer L, Healy D, Abou-Sleiman P, Hargreaves I, et al. 2006. PINK1 protein in normal human brain and Parkinson's disease. Brain 129: 1720-1731.  https://doi.org/10.1093/brain/awl114
  26. Seidner G, Robinson JE, Wu M, Worden K, Masek P, Roberts SW, et al. 2015. Identification of neurons with a privileged role in sleep homeostasis in Drosophila melanogaster. Curr. Biol. 25: 2928-2938.  https://doi.org/10.1016/j.cub.2015.10.006
  27. Menza M, Dobkin RD, Marin H, Bienfait K. 2010. Sleep disturbances in Parkinson's disease. Mov. Disord. 25: S117-S122.  https://doi.org/10.1002/mds.22788
  28. Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, et al. 2000. Rest in Drosophila is a sleep-like state. Neuron 25: 129-138.  https://doi.org/10.1016/S0896-6273(00)80877-6
  29. Majcin Dorcikova M, Duret LC, Pottie E, Nagoshi E. 2023. Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat. Commun. 14: 5908. 
  30. Fraigne JJ, Luppi PH, Mahoney CE, De Luca R, Shiromani PJ, Weber F, et al. 2023. Dopamine neurons in the ventral tegmental area modulate REM sleep. Sleep 46: zsad024. 
  31. Seugnet L, Suzuki Y, Vine L, Gottschalk L, Shaw PJ. 2008. D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr. Biol. 18: 1110-1117.  https://doi.org/10.1016/j.cub.2008.07.028
  32. Chung YC, Chun HK, Yang JY, Kim JY, Han EH, Kho YH, et al. 2005. Tungtungmadic acid, a novel antioxidant, from Salicornia herbacea. Arch. Pharm. Res. 28: 1122-1126.  https://doi.org/10.1007/BF02972972
  33. Lee JH, Lee S, Park JY, Park IH, Kang KS, Shin MS. 2023. The beneficial effect of Salicornia herbacea extract and isorhamnetin-3-O-glucoside on obesity. Processes 11: 977. 
  34. Nu-Ri A, Jung-Moon K, Hyeon-Cheol C. 2012. Comparison of flavonoid profiles between leaves and stems of Calystegia soldanella and Calystegia japonica. Am. J. Plant Sci. 3: 1073-1076. https://doi.org/10.4236/ajps.2012.38128