Acknowledgement
This work was supported by grants to Y.L. from the National Research Foundation of Korea (NRF) funded by the Korea government (MIST) (NRF-2021R1A2C1007628) and the Biomaterials Specialized Graduate Program through the Korea Environmental Industry and Technology Institute (KEITI) funded by the Ministry of Environment (MOE).
References
- Grinin L, Grinin A, Korotayev A. 2023. Global Aging: An Integral Problem of the Future. How to Turn a Problem into a Development Driver? pp. 117-135. Reconsidering the Limits to Growth: A Report to the Russian Association of the Club of Rome, Ed. Springer,
- Poudel S, Lee Y. 2018. Impaired taste associative memory and memory enhancement by feeding omija in Parkinson's disease fly model. Mol. Cells 41: 646-652.
- Menzies FM, Yenisetti SC, Min KT. 2005. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr. Biol. 15: 1578-1582. https://doi.org/10.1016/j.cub.2005.07.036
- Park J, Kim SY, Cha GH, Lee SB, Kim S, Chung J. 2005. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361: 133-139. https://doi.org/10.1016/j.gene.2005.06.040
- Nagakubo D, Taira T, Kitaura H, Ikeda M, Tamai K, Iguchi-Ariga SM, et al. 1997. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231: 509-513. https://doi.org/10.1006/bbrc.1997.6132
- Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, Wes PD, et al. 2005. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr. Biol. 15: 1572-1577. https://doi.org/10.1016/j.cub.2005.07.064
- Meulener MC, Xu K, Thomson L, Ischiropoulos H, Bonini NM. 2006. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc. Natl. Acad. Sci. USA 103: 12517-12522. https://doi.org/10.1073/pnas.0601891103
- Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, et al. 2007. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc. Natl. Acad. Sci. USA 104: 14807-14812. https://doi.org/10.1073/pnas.0703219104
- Hwang S, Song S, Hong YK, Choi G, Suh YS, Han SY, et al. 2013. Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genet. 9: e1003412.
- Aslam R, Bostan N, Nabgha-e-Amen MM, Safdar W. 2011. A critical review on halophytes: salt tolerant plants. J. Med. Plant Res. 5: 7108-7118. https://doi.org/10.5897/JMPRX11.009
- Rhee MH, Park HJ, Cho JY. 2009. Salicornia herbacea: Botanical, chemical and pharmacological review of halophyte marsh plant. J. Med. Plant Res. 3: 548-555.
- Eom T, Kim IH, Kim HJ, Choi Y, Nam TJ. 2021. Calystegia soldanella extract exerts anti-oxidative and anti-inflammatory effects via the regulation of the NF-κB/Nrf-2 pathways in mouse macrophages. Antioxidants 10: 1639.
- Stankovic MS, Petrovic M, Godjevac D, Stevanovic ZD. 2015. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? J. Arid Environ. 120: 26-32. https://doi.org/10.1016/j.jaridenv.2015.04.008
- Shim JH. 2022. Anti-inflammatory effect of Carex scabrifolia steud. extract in RAW264.7 cells. J. Microbiol. Biotechnol. 50: 354-360. https://doi.org/10.48022/mbl.2204.04003
- Najafian Y, Hamedi SS, Farshchi MK, Feyzabadi Z. 2018. Plantago major in Traditional Persian Medicine and modern phytotherapy: a narrative review. Electron. Physician 10: 6390-6399. https://doi.org/10.19082/6390
- Adom MB, Taher M, Mutalabisin MF, Amri MS, Kudos MBA, Sulaiman MWAW, et al. 2017. Chemical constituents and medical benefits of Plantago major. Biomed. Pharmacother. 96: 348-360. https://doi.org/10.1016/j.biopha.2017.09.152
- Samuelsen AB. 2000. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 71: 1-21. https://doi.org/10.1016/S0378-8741(00)00212-9
- Lee Y, Poudel S, Kim Y, Thakur D, Montell C. 2018. Calcium taste avoidance in Drosophila. Neuron 97: 67-74. e64. https://doi.org/10.1016/j.neuron.2017.11.038
- Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. 2000. Correlates of sleep and waking in Drosophila melanogaster. Science 287: 1834-1837. https://doi.org/10.1126/science.287.5459.1834
- Klarsfeld A, Leloup JC, Rouyer F. 2003. Circadian rhythms of locomotor activity in Drosophila. Behav. Processes 64: 161-175. https://doi.org/10.1016/S0376-6357(03)00133-5
- Diegelmann S, Jansen A, Jois S, Kastenholz K, Escarcena LV, Strudthoff N, et al. 2017. The CApillary FEeder assay measures food intake in Drosophila melanogaster. J. Vis. Exp. 17: 55024.
- Aryal B, Lee Y. 2019. Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Rep. 52: 250-258. https://doi.org/10.5483/BMBRep.2019.52.4.204
- Damier P, Hirsch E, Agid Y, Graybiel A. 1999. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122: 1437-1448. https://doi.org/10.1093/brain/122.8.1437
- Andretic R, Hirsh J. 2000. Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97: 1873-1878. https://doi.org/10.1073/pnas.97.4.1873
- Gandhi S, Muqit M, Stanyer L, Healy D, Abou-Sleiman P, Hargreaves I, et al. 2006. PINK1 protein in normal human brain and Parkinson's disease. Brain 129: 1720-1731. https://doi.org/10.1093/brain/awl114
- Seidner G, Robinson JE, Wu M, Worden K, Masek P, Roberts SW, et al. 2015. Identification of neurons with a privileged role in sleep homeostasis in Drosophila melanogaster. Curr. Biol. 25: 2928-2938. https://doi.org/10.1016/j.cub.2015.10.006
- Menza M, Dobkin RD, Marin H, Bienfait K. 2010. Sleep disturbances in Parkinson's disease. Mov. Disord. 25: S117-S122. https://doi.org/10.1002/mds.22788
- Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, et al. 2000. Rest in Drosophila is a sleep-like state. Neuron 25: 129-138. https://doi.org/10.1016/S0896-6273(00)80877-6
- Majcin Dorcikova M, Duret LC, Pottie E, Nagoshi E. 2023. Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat. Commun. 14: 5908.
- Fraigne JJ, Luppi PH, Mahoney CE, De Luca R, Shiromani PJ, Weber F, et al. 2023. Dopamine neurons in the ventral tegmental area modulate REM sleep. Sleep 46: zsad024.
- Seugnet L, Suzuki Y, Vine L, Gottschalk L, Shaw PJ. 2008. D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr. Biol. 18: 1110-1117. https://doi.org/10.1016/j.cub.2008.07.028
- Chung YC, Chun HK, Yang JY, Kim JY, Han EH, Kho YH, et al. 2005. Tungtungmadic acid, a novel antioxidant, from Salicornia herbacea. Arch. Pharm. Res. 28: 1122-1126. https://doi.org/10.1007/BF02972972
- Lee JH, Lee S, Park JY, Park IH, Kang KS, Shin MS. 2023. The beneficial effect of Salicornia herbacea extract and isorhamnetin-3-O-glucoside on obesity. Processes 11: 977.
- Nu-Ri A, Jung-Moon K, Hyeon-Cheol C. 2012. Comparison of flavonoid profiles between leaves and stems of Calystegia soldanella and Calystegia japonica. Am. J. Plant Sci. 3: 1073-1076. https://doi.org/10.4236/ajps.2012.38128