DOI QR코드

DOI QR Code

Lignocellulolytic Enzymes Production by Four Wild Filamentous Fungi for Olive Stones Valorization: Comparing Three Fermentation Regimens

  • Soukaina Arif (Moulay Ismail University of Meknes, Laboratory of Biotechnology and Bioresources Valorization) ;
  • Hasna Nait M'Barek (Moulay Ismail University of Meknes, Cluster of Competency (Agri-food, Safety and Security) IUC VLIR-UOS) ;
  • Boris Bekaert (Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops) ;
  • Mohamed Ben Aziz (Sultan Moulay Sliman University, Higher School of Technology, Laboratory of Biotechnology, Bioresources, and Bioinformatics (3BIO)) ;
  • Mohammed Diouri (Moulay Ismail University of Meknes, Laboratory of Biotechnology and Bioresources Valorization) ;
  • Geert Haesaert (Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops) ;
  • Hassan Hajjaj (Moulay Ismail University of Meknes, Laboratory of Biotechnology and Bioresources Valorization)
  • Received : 2023.12.29
  • Accepted : 2024.03.12
  • Published : 2024.05.28

Abstract

Lignocellulolytic enzymes play a crucial role in efficiently converting lignocellulose into valuable platform molecules in various industries. However, they are limited by their production yields, costs, and stability. Consequently, their production by producers adapted to local environments and the choice of low-cost raw materials can address these limitations. Due to the large amounts of olive stones (OS) generated in Morocco which are still undervalued, Penicillium crustosum, Fusarium nygamai, Trichoderma capillare, and Aspergillus calidoustus, are cultivated under different fermentation techniques using this by-product as a local lignocellulosic substrate. Based on a multilevel factorial design, their potential to produce lignocellulolytic enzymes during 15 days of dark incubation was evaluated. The results revealed that P. crustosum expressed a maximum total cellulase activity of 10.9 IU/ml under sequential fermentation (SF) and 3.6 IU/ml of β-glucosidase activity under submerged fermentation (SmF). F. nygamai recorded the best laccase activity of 9 IU/ml under solid-state fermentation (SSF). Unlike T. capillare, SF was the inducive culture for the former activity with 7.6 IU/ml. A. calidoustus produced, respectively, 1,009 ㎍/ml of proteins and 11.5 IU/ml of endoglucanase activity as the best results achieved. Optimum cellulase production took place after the 5th day under SF, while ligninases occurred between the 9th and the 11th days under SSF. This study reports for the first time the lignocellulolytic activities of F. nygamai and A. calidoustus. Furthermore, it underlines the potential of the four fungi as biomass decomposers for environmentally-friendly applications, emphasizing the efficiency of OS as an inducing substrate for enzyme production.

Keywords

Acknowledgement

The Institutional University Cooperation (IUC) program between Moulay Ismail University and Belgian Flemish Universities, funded by the VLIR-UOS (Vlaamse Interuniversitaire Raad-Universitaire Ontwikkelingssamenwerking) is acknowledged for its financial support. OLEA FOOD Company is also acknowledged for supplementing the olive stones used for this study.

References

  1. IOC. 2022. THE WORLD OF OLIVE OIL. Available from https://www.internationaloliveoil.org/the-world-of-olive-oil/ 
  2. Romero-Garcia JM, Nino L, Martinez-Patino C, Alvarez C, Castro E, Negro MJ. 2014. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol 159: 421-432.  https://doi.org/10.1016/j.biortech.2014.03.062
  3. Manzanares P, Ruiz E, Ballesteros M, Negro MJ, Gallego FJ, Lopez-Linares JC, et al. 2017. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context. Spanish J. Agric. Res. 15: e0206. 
  4. Padilla-Rascon C, Ruiz E, Romero I, Castro E, Oliva JM, Ballesteros I, et al. 2020. Valorisation of olive stone by-product for sugar production using a sequential acid/steam explosion pretreatment. Ind. Crops Prod. 148: 112279. 
  5. Rodriguez G, Lama A, Rodriguez R, Jimenez A, Guillen R, Fernandez-Bolanos J. 2008. Olive stone an attractive source of bioactive and valuable compounds. Bioresour. Technol 99: 5261-5269.  https://doi.org/10.1016/j.biortech.2007.11.027
  6. Najafi E, Castro E, Karimi K. 2021. Biorefining for olive wastes management and efficient bioenergy production. Energy Convers. Manag. 244: 114467. 
  7. Eliopoulos C, Markou G, Chorianopoulos N, Haroutounian SA, Arapoglou D. 2022. Transformation of mixtures of olive mill stone waste and oat bran or Lathyrus clymenum pericarps into high added value products using solid state fermentation. Waste Manag. 149: 68-176.  https://doi.org/10.1016/j.wasman.2022.06.018
  8. Bolek S. 2020. Olive stone powder: a potential source of fiber and antioxidant and its effect on the rheological characteristics of biscuit dough and quality. Innov. Food Sci. Emerg. Technol. 64: 102423. 
  9. Rodrigues F, Pimentel FB, Oliveira MBPP. 2015. Olive by-products: challenge application in cosmetic industry. Ind. Crops Prod. 70: 116-124.  https://doi.org/10.1016/j.indcrop.2015.03.027
  10. Romero-Garcia JM, Feher C, Cara C, Ruiz-Ramos E, Castro E. 2022. Improved xylitol production from olive stones hydrolysates by biological detoxification. J. Clean. Prod. 336: 130408. 
  11. Saleem J, Bin Shahid U, Hijab M, H. Mackey, G. McKay. 2019. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Bior. 9: 775-802.  https://doi.org/10.1007/s13399-019-00473-7
  12. Ruiz E, Romero-Garcia JM, Romero I, Manzanares P, Negro MJ, Castro E. 2017. Olive-derived biomass as a source of energy and chemicals. Biofuels Bioprod. Biorefining 11: 1077-1094.  https://doi.org/10.1002/bbb.1812
  13. Scopel E, Rezende CA. 2021. Biorefinery on-demand: modulating pretreatments to recover lignin, hemicellulose, and extractives as co-products during ethanol production. Ind. Crops Prod. 163: 113336. 
  14. Zerva A, Pentari C, Ferousi C, Nikolaivits E, Karnaouri A, Topakas E. 2021. Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. Bioresour. Technol. 342: 126058. 
  15. Wu D, Wei Z, Mohamed TA, Zheng G, Qu F, Wang F, et al. 2022. Lignocellulose biomass bioconversion during composting: mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere 286: 131635. 
  16. Guo H, He T, Lee DJ. 2022. Contemporary proteomic research on lignocellulosic enzymes and enzymolysis: a review. Bioresour. Technol. 344: (Pt B): 126263. 
  17. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, et al. 2016. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 41: 633-645.  https://doi.org/10.1016/j.tibs.2016.04.006
  18. Sanchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185-194.  https://doi.org/10.1016/j.biotechadv.2008.11.001
  19. Andlar M, Rezic T, Mardetko N, Kracher D, Ludwig R, Santek B. 2018. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 18: 768. 
  20. Kracher D, Ludwig R. 2016. Cellobiose dehydrogenase: an essential enzyme for lignocellulose degradation in nature - A review. Bodenkultur 67: 145-163.  https://doi.org/10.1515/boku-2016-0013
  21. Silva IS, de Menezes CR, Franciscon E, dos Santos EC, Durrant LR. 2010. Degradation of lignosulfonic and tannic acids by ligninolytic soil fungi cultivated under icroaerobic conditions. Braz. Arch. Biol. Technol. 53: 693-699.  https://doi.org/10.1590/S1516-89132010000300026
  22. Toushik SH, Lee KT, Lee JS, Kim KS. 2017. Functional applications of lignocellulolytic enzymes in the fruit and vegetable processing industries. J. Food Sci. 82: 585-593.  https://doi.org/10.1111/1750-3841.13636
  23. Kuhad RC, Gupta R, Singh A. 2011. Microbial cellulases and their industrial applications. Enzyme Res. 2011: 280696. 
  24. Ahmed A, & Bibi A. 2018. Fungal cellulase; production and applications: minireview. Int. J. Health Life Sci. 4: 19-36. 
  25. Yang H, Qu J, Zou W, Shen W, Chen X. 2021. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl. Microbiol. Biotechnol. 105: 6607-6626.  https://doi.org/10.1007/s00253-021-11533-2
  26. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549.  https://doi.org/10.1016/j.enzmictec.2010.03.010
  27. Shah F, Ranawat B, Mishra S. 2019. An approach toward cellulase production, bioconversion, and utilization. Adv. Bioprocess. Altern. Fuels Biobased Chem. Bioprod. 2019: 207-223.  https://doi.org/10.1016/B978-0-12-817941-3.00011-5
  28. Janusz G, Rogalski J, Szczodrak J. 2007. Increased production of laccase by Cerrena unicolor in submerged liquid cultures. World J. Microbiol. Biotechnol. 23: 1459-1464. https://doi.org/10.1007/s11274-007-9390-y
  29. Ramamoorthy N., Sahadevan STRR. 2019. Assessment of fed-batch strategies for enhanced cellulase production from a waste lignocellulosic mixture. Biochem. Eng. J. 152: 107387. 
  30. Cunha FM, Esperanca MN, Zangirolami TC, Badino AC, Farinas CS. 2012. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour. Technol. 112: 270-274.  https://doi.org/10.1016/j.biortech.2012.02.082
  31. Florencio C, Cunha FM, Badino AC, Farinas CS, Ximenes E, Ladisch MR. 2016. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods. Data Brief 8: 588-598.  https://doi.org/10.1016/j.dib.2016.05.080
  32. Santos GB, de Sousa Francisco Filho A, da Silva Rodrigues JR, & de Souza RR. 2022. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: evaluation of different cultivation strategies. J. Environ. Manage. 305: 114431. 
  33. de Franca Passos D, Pereira Jr N, de Castro AM. 2018. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr. Opin. Green Sustain. Chem. 14: 60-66.  https://doi.org/10.1016/j.cogsc.2018.06.003
  34. Vaishnav N, Singh A, Adsul M, Dixit P, Sandhu SK, Mathur A, et al. 2018. Penicillium: the next emerging champion for cellulase production. Bioresour. Technol. Rep. 2: 131-140.  https://doi.org/10.1016/j.biteb.2018.04.003
  35. Zhang X, Wang X, Li C, Zhang L, Ning G, Shi W, Zhang X, Yang Z. 2020. Ligninolytic enzyme involved in removal of high molecular weight polycyclic aromatic hydrocarbons by Fusarium strain ZH-H2. Environ. Sci. Pollut. Res. Int. 27: 42969-42978.  https://doi.org/10.1007/s11356-020-10192-6
  36. Sijinamanoj V, Muthukumar T, Muthuraja R, Rayappan K, Karmegam N, Saminathan K, et al. 2021. Ligninolytic valorization of agricultural residues by Aspergillus nomius and Trichoderma harzianum isolated from gut and comb of Odontotermes obesus (Termitidae). Chemosphere 284:131384. 
  37. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. 2011. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 109: 1083-1087.  https://doi.org/10.1002/bit.24370
  38. Leite P, Sousa D, Fernandes H, Ferreira M, Costa AR, Filipe D, et al. 2021. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Curr. Opin. Green Sustain. Chem. 27: 100407. 
  39. Srivastava N, Singh R, Singh P, Ahmad I, Pratap Singh R, Rai AK, et al. 2023. Recent advances on lignocellulosic bioresources and their valorization in biofuels production: challenges and viability assessment. Environ. Technol. Innov. 29: 103037. 
  40. Ministere de l'agriculture. 2019. Filiere Oleicole. Available from https://www.agriculture.gov.ma/fr/filiere/olivier. 
  41. Nait M'Barek H, Arif S, Taidi B, Hajjaj H. 2020. Consolidated bioethanol production from olive mill waste: wood-decay fungi from central Morocco as promising decomposition and fermentation biocatalysts. Biotechnol. Rep. 28: e00541. 
  42. Garcia Martin JF, Cuevas M, Feng CH, Mateos PA, Garcia MT, Sanchez S. 2020. Energetic valorisation of olive biomass: olive-tree pruning, olive stones and pomaces. Process 8: 511. 
  43. Arif S, Nait M'Barek H, Oulghazi S, Audenaert K, Hajjaj H. 2022. Lignocellulose-degrading fungi newly isolated from central Morocco are potent biocatalysts for olive pomace valorization. Arch. Microbiol. 204: 704. 
  44. Mandels M, Sternberg D. 1976. Recent advances in cellulase technology. Hakko Kogaku Zasshi; Japan 54. 
  45. Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.  https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  46. Pointing SB. 1999. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 2: 17-33. 
  47. Florencio C, Couri S, Farinas CS. 2012. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. 2012: 793708. 
  48. Ghose TK. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268.  https://doi.org/10.1351/pac198759020257
  49. Miller GL, Blum R, Glennon WE, Burton AL. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 1: 127-132.  https://doi.org/10.1016/0003-2697(60)90004-X
  50. Hariharan S, Nambisan P. 2013. Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources 8: 250-271.  https://doi.org/10.15376/biores.8.1.250-271
  51. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265- 275.  https://doi.org/10.1016/S0021-9258(19)52451-6
  52. RCO. 2021. R: a language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria 29. 
  53. Intasit R, Cheirsilp B, Suyotha W, Boonsawang P. 2021. Synergistic production of highly active enzymatic cocktails from lignocellulosic palm wastes by sequential solid state-submerged fermentation and co-cultivation of different filamentous fungi. Biochem. Eng. J. 173: 108086. 
  54. Singh SS, Abdullah S, Pradhan RC, Mishra S. 2019. Physical, chemical, textural, and thermal properties of cashew apple fruit. J. Food Process Eng. 42: e13094. 
  55. Zhou Z, Ju X, Chen J, Wang R, Zhong Y, Li L. 2021. Charge-oriented strategies of tunable substrate affinity based on cellulase and biomass for improving in situ saccharification: a review. Bioresour. Technol. 319: 124159. 
  56. Salgado JM, Abrunhosa L, Venancio A, Dominguez JM, Belo I. 2014. Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation. Biomass Convers. Bior. 4: 201-209.  https://doi.org/10.1007/s13399-013-0100-8
  57. da Luz JM, Nunes MD, Paes SA, Torres DP, de Cassia Soares da Silva M, Kasuya MC. 2012. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. Braz. J. Microbiol. 43: 1508-1515.  https://doi.org/10.1590/S1517-83822012000400035
  58. Saroj P, Manasa P, Narasimhulu K. 2018. Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresour. Bioprocess 5: 31. 
  59. Mankar AR, Pandey A, Modak A, Pant KK. 2021. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour. Technol. 334: 125235. 
  60. Phojaroen J, Jiradechakorn T, Kirdponpattara S, Sriariyanun M, Junthip J, Chuetor S. 2022. Performance evaluation of combined hydrothermal-mechanical pretreatment of lignocellulosic biomass for enzymatic enhancement. Polymers (Basel) 14: 2313 . 
  61. Singh D, and Chen S. 2008. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl. Microbiol. Biotechnol. 81: 399-417.  https://doi.org/10.1007/s00253-008-1706-9
  62. Abd-Aziz S, Hung GS, Hassan MA, Abdul Kari MI, Samat N. 2008. Indirect method for quantification of cell biomass during solid-state fermentation of palm kernel cake based on protein content. Asian J. Sci. Res. 1: 385-393.  https://doi.org/10.3923/ajsr.2008.385.393
  63. Lubeck M, and Lubeck PS. 2022. Fungal cell factories for efficient and sustainable production of proteins and peptides. Microorganisms 10: 753. 
  64. das Neves CA, de Menezes LHS, Soares GA, et al. 2022. Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Convers. 12: 3133-3144.  https://doi.org/10.1007/s13399-020-00930-8
  65. Di Dong C, Tiwari A, Anisha GS, Wen Chen C, Singh A, Haldar D, et al. 2023. Laccase: a potential biocatalyst for pollutant degradation. Environ. Pollut. 319: 120999. 
  66. Chilakamarry CR, Mimi Sakinah AM, Zularisam AW, Sirohi R, Ahamad Khilji I, Ahmad N, et al. 2022. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: opportunities and challenges. Bioresour. Technol. 343: 126065. 
  67. Schmoll M. 2011. Assessing the relevance of light for fungi: implications and insights into the network of signal transmission. Adv. Appl. Microbiol 76: 27-78.  https://doi.org/10.1016/B978-0-12-387048-3.00002-7
  68. Schmoll M. 2018. Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biol. Biotechnol. 5: 10.
  69. Zhou C, Zhou H, Li D, Zhang H, Wang H, Lu F. 2020. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microb. Cell Fact. 19: 45. 
  70. Florencio C, Cunha FM, Badino AC, Farinas CS. 2015. Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Appl. Biochem. Biotechnol. 175: 1389-1402.  https://doi.org/10.1007/s12010-014-1357-5
  71. Mrudula S, Murugammal R. 2011. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz. J. Microbiol. 42: 1119-1127.  https://doi.org/10.1590/S1517-83822011000300033
  72. An Q, Wu XJ, Han ML, Cui BK, He SH, Dai YC, Si J. 2016. Sequential solid-state and submerged cultivation of the white rot fungus Pleurotus ostreatus on biomass and the activity of lignocellulolytic enzymes. BioResources 11: 8791-8805.  https://doi.org/10.15376/biores.11.4.8791-8805
  73. Gomes E, da Silva R, de Cassia Pereira J, Ladino-Orjuela G. 2018. Fungal growth on solid substrates: a physiological overview. Curr. Dev. Biotechnol. Bioeng. 2018: 31-56.  https://doi.org/10.1016/B978-0-444-63990-5.00003-7
  74. Teixeira Da Silva VDC, De Souza Coto AL, De Carvalho Souza R, Neves MBS, Gomes E, Bonilla-Rodriguez GO. 2016. Effect of pH, temperature, and chemicals on the endoglucanases and β-glucosidases from the thermophilic fungus Myceliophthora heterothallica F.2.1.4. obtained by solid-state and submerged cultivation. Biochem. Res. Int. 2016: 9781216. 
  75. Suryadi H, Judono JJ, Putri MR, Eclessia AD, Ulhaq JM, Agustina DN, et al. 2022. Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon 8: e08865. 
  76. Rodriguez-Couto S, Rodriguez R, Gallego PP, Sanroman A. 2003. Biodegradation of grape cluster stems and ligninolytic enzyme production by Phanerochaete chrysosporium during semi-solid-state cultivation. Acta Biotechnol. 23: 65-74.  https://doi.org/10.1002/abio.200390010
  77. Lorenzo M, Moldes D, Rodriguez Couto S, Sanroman A. 2002. Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresour. Technol. 82: 109-113. https://doi.org/10.1016/S0960-8524(01)00176-6