DOI QR코드

DOI QR Code

Seismic performance of the immersed tunnel under offshore and onshore ground motions

  • Bowei Wang (School of Infrastructure Engineering, Nanchang University) ;
  • Guquan Song (School of Infrastructure Engineering, Nanchang University) ;
  • Rui Zhang (School of Civil Engineering, Dalian Jiaotong University) ;
  • Baokui Chen (School of Infrastructure Engineering, Nanchang University)
  • Received : 2023.03.08
  • Accepted : 2024.04.30
  • Published : 2024.07.25

Abstract

There are obvious differences between the characteristics of offshore ground motion and onshore ground motion in current studies, and factors such as water layer and site conditions have great influence on the characteristics of offshore ground motion. In addition, unlike seismic response analysis of offshore superstructures such as sea-crossing bridges, tunnels are affected by offshore soil constraints, so it is necessary to consider the dynamic interaction between structure and offshore soil layer. Therefore, a seismic response analysis model considering the seawater, soil layer and tunnel structure coupling is established. Firstly, the measured offshore and different soil layers onshore ground records are input respectively, and the difference of seismic response under different types of ground motions is analyzed. Then, the models of different site conditions were input into the measured onshore bedrock strong ground motion records to study the influence of seawater layer and silt soft soil layer on the seabed and tunnel structure. The results show that the overall seismic response between the seabed and the tunnel structure is more significant when the offshore ground motion is input. The seawater layer can suppression the vertical seismic response of seabed and tunnel structure, while the slit soft soil layer can amplify the horizontal seismic response. The results will help to promote seismic wave selection of marine structures and provide reference for improving the accuracy of seismic design of immersed tunnels.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (grant number 52268076, 51868048, 52278340); the Jiangxi Natural Science Foundation (grant numbers 20232BAB204086). We are grateful to the K-net for providing valuable research data and the related earthquake information.

References

  1. Anastasopoulos, I., Gerolymos, N., Drosos, V. and Kourkoulis, R. (2007), "Nonlinear response of deep immersed tunnel to strong seismic shaking", J. Geotech. Geoenviron. Eng., 133(9), 1067-1090. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1067).
  2. Anastasopoulos, I., Gerolymos, N., Drosos, V., Georgarakos, T., Kourkoulis, R. and Gazetas, G. (2008), "Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking", Bull. Earthq. Eng., 6(2), 213-239. https://doi.org/10.1007/s10518-007-9055-0.
  3. Aoi, S., Asano, Y., Kunugi, T., Kimura, T., Uehira, K., Takahashi, N., Ueda, H., Shiomi, K., Matsumoto, T. and Fujiwara, H. (2020), "MOWLAS: NIED observation network for earthquake, tsunami and volcano", Earth Planets Sp., 72(1), 1-31. https://doi.org/10.1186/s40623-020-01250-x.
  4. Aoi, S., Kunugi, T. and Fujiwara, H. (2004), "Strong-motion seismograph network operated by NIED: K-NET and KiK-NET", Japan Assoc. Earthq. Eng., 4(3), 65-74. https://doi.org/10.5610/jaee.4.3_65.
  5. Boore, D.M. and Smith, C.E. (1999), "Analysis of earthquake recordings obtained from the seafloor earthquake measurement system (SEMS) instruments deployed off the coast of southern California", Bull. Seismol. Soc. Am., 89(1), 260-274. https://doi.org/10.1785/BSSA0890010260
  6. Brancaleoni, F., Castellani, A. and D'Asdia, P. (1989), "The response of submerged tunnels to their environment", Eng. Struct., 11(1), 47-56. https://doi.org/10.1016/0141-0296(89)90032-1.
  7. Chen, B., Wang, B., Tian, Q. and Hu, S. (2021), "Effect of site factors on the characteristics of offshore ground motions based on strong motion observation records", Chin. Earthq. Eng. J., 43(5), 1183-1189. https://10.3969/j.issn.1000-0844.2021.05.1183.
  8. Chen, B.K., Du, Y.J., Shi, Y. and Fan, L. (2021), "Seismic analysis of isolated continuous bridge considering influence of seawater and site condition", Shock Vib., 2021, 7599715. https://doi.org/10.1155/2021/7599715.
  9. Chen, B.K., Li, H.N., Wang, D.S. and Sun, Z.G. (2014), "Strength reduction factor spectra with constant ductility for offshore ground motions", Earthq. Eng. Eng. Vib., 34(2), 1-11. https://doi.org/10.13197/j.eeev.2014.02.1.chenbk.001.
  10. Chen, B.K., Wang, B.W., Ma, Z.Q., Du, Y.J. and Li, C. (2023), "Influence of seawater depth on offshore ground motion characteristics and seismic responses of sea-crossing cable-stayed bridges", Ocean Eng., 280, 114853. https://doi.org/10.1016/j.oceaneng.2023.114853.
  11. Chen, B.K., Wang, D.S., Chen, S.L. and Hu, S.C. (2021), "Influence of site factors on offshore ground motions: Observed results and numerical simulation", Soil Dyn. Earthq. Eng., 145, 106729. https://doi.org/10.1016/j.soildyn.2021.106729.
  12. Chen, B.K., Wang, D.S., Li, H.N., Sun, Z.G. and Li, C. (2017), "Vertical-to-horizontal response spectral ratio for offshore ground motions: Analysis and simplified design equation", J. Central South Univ., 24(1), 203-216. https://doi.org/10.1007/s11771-017-3421-0.
  13. Chen, B.K., Wang, D.S., Li, H.N., Sun, Z.G. and Shi, Y. (2015), "Characteristics of earthquake ground motion on the seafloor", J. Earthq. Eng., 19(6), 874-904. https://doi.org/10.1080/13632469.2015.1006344.
  14. Courboulex, F., Mercerat, E.D., Deschamps, A., Migeon, S., Baques, M., Larroque, C., Rivet, D. and Hello, Y. (2020), "Strong site effect revealed by a new broadband seismometer on the Continental Shelf Offshore Nice Airport (Southeastern France)", Pure Appl. Geophys., 177(7), 3205-3224. https://doi.org/10.1007/s00024-019-02408-9.
  15. Cui, J., Zhou, P., Li, Y. and Ouyang, Z. (2016), "Earthquake dynamic response analysis of seabed under the action of immersed tunnel", Earthq. Eng. Eng. Dyn., 36(4), 96-102. https://doi.org/10.13197/j.eeev.2016.04.96.cuij.011.
  16. Diao, H.Q., Hu, J.J. and Xie, L.L. (2014), "Effect of seawater on incident plane P and SV waves at ocean bottom and engineering characteristics of offshore ground motion records off the coast of southern California, USA", Earthq. Eng. Eng. Vib., 13(2), 181-194. https://doi.org/10.1007/s11803-014-0222-4.
  17. Dong, Z., Kuo, C., Zhang, C., Guo, Q. and Zeng, F. (2021), "Transverse seismic vulnerability analysis of tunnels based on modified IDA method", Earthq. Struct., 20(6), 639-653. https://doi.org/10.12989/eas.2021.20.6.639.
  18. Fu, J.Y., Tong, L., An, Z.H. and Wang, D.S. (2022), "Seismic analysis of isolated continuous bridge considering influence of seawater and site condition", Eng. Fail. Anal., 137, 106254. https://doi.org/10.1016/j.engfailanal.2022.106254.
  19. Gomberg, J. (2018), "Cascadia onshore-offshore site response, submarine sediment mobilization, and earthquake recurrence", J. Geophys. Res. Solid Earth, 123(2), 1381-1404. https://doi.org/10.1002/2017JB014985.
  20. Hu, J.J. and Tan, J.Y. (2022b), "GMPEs for elastic input energy spectra of horizontal and vertical offshore ground motions based on the ETMC database in Japan", Soil Dyn. Earthq. Eng., 155, 107198. https://doi.org/10.1016/j.soildyn.2022.107198.
  21. Hu, J.J., Diao H.Q. and Xie, L.L. (2013), "Review of observation and characteristics of seafloor strong motion", Earthq. Eng. Eng. Dyn., 33(6), 1-8. https://doi.org/10.13197/j.eeev.2013.06.1.hujj.001.
  22. Hu, J.J., Hu, L., Jin, C.Y., Wang, Z.W., Ding, Y.T. and Tang, C. (2022c), "Offshore ground motion models for Arias intensity and cumulative absolute velocity in the Japan trench area", J. Earthq. Eng., 27(24), 4005-4023. https://doi.org/10.1080/13632469.2022.2155732.
  23. Hu, J.J., Liu, M.G. and Tan, J.Y. (2022a), "Damping modification factors for horizontal and vertical acceleration spectra from offshore ground motions in the Japan Sagami Bay Region", Bull. Seismol. Soc. Am., 112(5), 2621-2641. https://doi.org/10.1785/0120210327.
  24. Lin, J.Y., Chen, Y.F., Su, C.C., Chin, S.J., Chin, S.J., Wu, W.N., Liang, C.W., Hsieh, H.S., Hsu, S.K. and Lin, Y.C. (2018), "Seismic site response of submarine slope offshore southwestern Taiwan", Atmosph. Ocean. Sci., 29(1), 51-63. https://doi.org/10.3319/TAO.2017.05.09.01.
  25. Nakano, M., Nakamura, T., Kamiya, S., Ohori, M. and Kaneda, Y. (2013), "Intensive seismic activity around the Nankai trough revealed by DONET ocean-floor seismic observations", Earth Planets Sp., 65(1), 5-15. https://doi.org/10.5047/eps.2012.05.013.
  26. Okamoto, S. and Tamura, C. (1973), "Behaviour of subaqueous tunnels during earthquakes", Earthq. Eng. Struct. Dyn., 1(3), 253-266. https://doi.org/10.1002/eqe.4290010306.
  27. Ouyang, Z., Cui, J., Luo, R. and Li, P. (2020), "Shaking table test of seismic response of immersed tunnels under the influence of multiple factors", Shock Vib., 2020(S2), 8858486. https://doi.org/10.1155/2020/8858486.
  28. Ouyang, Z., Cui, J., Luo, R. and Li, P. (2021), "Shaking table model test of immersed tunnels with different site conditions and seismic wave input directions", Ships Offshore Struct., 2021(16), 20-32. https://doi.org/10.1080/17445302.2020.1829372.
  29. Tochaei, E.N., Taylor, T. and Ansari, F. (2020), "Effects of near-field ground motions and soil-structure interaction on dynamic response of a cable-stayed bridge", Soil Dyn. Earthq. Eng., 133, 106115. https://doi.org/10.1016/j.soildyn.2020.106115.
  30. Tran, T.T., Nguyen, P.C., So, G. and Kim, D. (2020a), "Seismic behavior of steel cabinets considering nonlinear connections and site-response effects", Steel Compos. Struct., 36(1), 17-29. https://doi.org/10.12989/scs.2020.36.1.017.
  31. Tran, T.T., Salman, K., Han, S.R. and Kim, D. (2020b), "Probabilistic models for uncertainty quantification of soil properties on site response analysis", ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A-Civil Eng., 6(3), 04020030. https://doi.org/10.1061/AJRUA6.0001079.
  32. Wang, Z., Jiang, L. and Gao, Y. (2019), "Shaking table test of seismic response of immersed tunnels under effect of water", Soil Dyn. Earthq. Eng., 116, 436-445. https://doi.org/10.1016/j.soildyn.2018.10.039.
  33. Yang, Y., Tian, X., Liu, Q., Zhi, J. and Wang, B. (2019), "Anti-seismic behavior of composite precast utility tunnels based on pseudo-static tests", Earthq. Struct., 17(2), 233-244. https://doi.org/10.12989/eas.2019.17.2.233.
  34. Yang, Y., Xu, R., Li, Y. and Li, Z. (2021), "Study on seismic response characteristics of full light-weight concrete prefabricated utility tunnels", Earthq. Struct., 21(1), 51-62. https://doi.org/10.12989/eas.2021.21.1.051.
  35. Yue, X., Xie, Y. and Xie, Y. (2018), "The deformation characteristics of weak foundation with high back siltation in the immersed tunnel", Adv. Mater. Sci. Eng., 2018, 6538764. https://doi.org/10.1155/2018/6538764.
  36. Zhang, G., Wang, P., Zhao, M., Du, X. and Zhao, X. (2021), "Seismic structure - water - sediment - rock interaction model and its application to immersed tunnel analysis under obliquely incident earthquake", Tunn. Undergr. Sp. Technol., 109(2), 103758. https://doi.org/10.1016/j.tust.2020.103758.
  37. Zhang, S., Yuan, Y., Li, C., Chen, H. and Chen, Z. (2021), "Seismic responses of long segmental immersed tunnel under unfavorable loads combination", Transp. Geotech., 30(1-2), 100621. https://doi.org/10.1016/j.trgeo.2021.100621.
  38. Zhong, X., Chang, H. and Jia, B. (2019), "Seismic behaviour of hybrid-fibre reinforced concrete shear keys in immersed tunnels", Tunn. Undergr. Sp. Technol., 88, 16-28. https://doi.org/10.1016/j.tust.2019.02.022.