DOI QR코드

DOI QR Code

Fermented Milk Containing Lacticaseibacillus rhamnosus SNU50430 Modulates Immune Responses and Gut Microbiota in Antibiotic-Treated Mice

  • Sunghyun Yoon (Graduate School of Public Health, Seoul National University) ;
  • SungJun Park (N-Bio, Seoul National University) ;
  • Seong Eun Jung (R&BD Center, hy Co., Ltd.) ;
  • Cheonghoon Lee (Graduate School of Public Health, Seoul National University) ;
  • Woon-Ki Kim (Graduate School of Public Health, Seoul National University) ;
  • Il-Dong Choi (R&BD Center, hy Co., Ltd.) ;
  • GwangPyo Ko (Graduate School of Public Health, Seoul National University)
  • 투고 : 2024.01.15
  • 심사 : 2024.04.15
  • 발행 : 2024.06.28

초록

Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430-antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL-5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.

키워드

과제정보

This research was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) through a High Value-added Food Technology Development Program funded by Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (315067-3), the Bio & Medical Technology Development Program the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (NRF-2022M3A9F3017371), and the Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2021R1I1A1A01048923).

참고문헌

  1. Marild K, Ye W, Lebwohl B, Green PH, Blaser MJ, Card T, et al. 2013. Antibiotic exposure and the development of coeliac disease: a nationwide case-control study. BMC Gastroenterol. 13: 109.
  2. Chen IL, Tsai MK, Chung HW, Hsieh HM, Huang YT, Lin YC, et al. 2021. The effects of antibiotic exposure on asthma in children with atopic dermatitis. Sci. Rep. 11: 8526.
  3. Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. 2023. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 20: 81-100.
  4. Knoop KA, McDonald KG, Kulkarni DH, Newberry RD. 2015. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 65: 1100-1109. https://doi.org/10.1136/gutjnl-2014-309059
  5. Looft T, Allen HK. 2012. Collateral effects of antibiotics on mammalian gut microbiome. Gut Microbes 3: 463-467. https://doi.org/10.4161/gmic.21288
  6. Gupta R, Sangeeta S. 2020. Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis. Indian J. Med. Res. 156: 464-477. https://doi.org/10.4103/ijmr.IJMR_3514_20
  7. Mohsen S, Dickinson JA, Somayaji R. 2020. Update on the adverse effects of antimicrobial therapies in community practice. Can. Fam. Physician 66: 651-659.
  8. Hadjimbei E, Botsaris G, Chrysostomou S. 2022. Beneficial effects of yoghurts and probiotic fermented milks and their functional food potential. Foods 11: 2691.
  9. Sionek B, Szydlowska A, Kucukgoz K, Kolozyn-Krajewska D. 2023. Traditional and new microorganisms in lactic acid fermentation of food. Fermentation 9: 1019.
  10. Wang S, Zhu H, Lu C, Kang Z, Luo Y, Feng L, et al. 2012. Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals. J. Dairy Sci. 95: 4813-4822. https://doi.org/10.3168/jds.2012-5426
  11. Jiang T, Li Y, Li L, Liang T, Du M, Yang L, et al. 2022. Bifidobacterium longum 070103 fermented milk improve glucose and lipid metabolism disorders by regulating gut microbiota in mice. Nutrients 14: 4050.
  12. Santiago-Lopez L, Hernandez-Mendoza A, Garcia HS, Mata-Haro V, Vallejo-Cordoba B, Gonzalez-Cordova AF. 2015. The effects of consuming probiotic-fermented milk on the immune system: A review of scientific evidence. Int. J. Dairy Technol. 68: 153-165. https://doi.org/10.1111/1471-0307.12202
  13. Matsuoka K, Uemura Y, Kanai T, Kunisaki R, Suzuki Y, Yokoyama K, et al. 2018. Efficacy of Bifidobacterium breve fermented milk in maintaining remission of ulcerative colitis. Dig. Dis. Sci. 63: 1910-1919. https://doi.org/10.1007/s10620-018-4946-2
  14. Feng C, Zhang W, Zhang T, Li B, He Q, Kwok L-Y, et al. 2022. Oral administration of pasteurized probiotic fermented milk alleviates dextran sulfate sodium-induced inflammatory bowel disease in rats. J. Funct. Foods 94: 105140.
  15. Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. 2022. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis. 13: 1106.
  16. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. 2006. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40: 235-243. https://doi.org/10.1097/00004836-200603000-00015
  17. Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, et al. 2022. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 23: 1105.
  18. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277.
  19. Yip W, Hughes MR, Li Y, Cait A, Hirst M, Mohn WW, et al. 2021. Butyrate shapes immune cell fate and function in allergic asthma. Front. Immunol. 12: 628453.
  20. Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S, et al. 2018. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci. Rep. 8: 12649.
  21. Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, et al. 2009. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183: 6041-6050. https://doi.org/10.4049/jimmunol.0900747
  22. Kim W-K, Jang YJ, Seo B, Han DH, Park S, Ko G. 2019. Administration of Lactobacillus paracasei strains improves immunomodulation and changes the composition of gut microbiota leading to improvement of colitis in mice. J. Funct. Foods 52: 565-575. https://doi.org/10.1016/j.jff.2018.11.035
  23. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. 2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1: e00009-00015. https://doi.org/10.1128/mSystems.00009-15
  24. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  25. Yoon S, Lee G, Yu J, Lee K, Lee K, Si J, et al. 2022. Distinct changes in Microbiota-mediated intestinal metabolites and immune responses induced by different antibiotics. Antibiotics 11: 1762.
  26. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
  27. Han DH, Kim W-K, Lee C, Park S, Lee K, Jang SJ, et al. 2022. Co-administration of Lactobacillus gasseri KBL697 and tumor necrosis factor-alpha inhibitor infliximab improves colitis in mice. Sci. Rep. 12: 9640.
  28. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-563. https://doi.org/10.1038/nature12820
  29. Ward NC, Yu A, Moro A, Ban Y, Chen X, Hsiung S, et al. 2018. IL-2/CD25: a long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells. J. Immunol. 201: 2579-2592. https://doi.org/10.4049/jimmunol.1800907
  30. Reyes-Diaz A, Mata-Haro V, Hernandez J, Gonzalez-Cordova AF, Hernandez-Mendoza A, Reyes-Diaz R, et al. 2018. Milk fermented by specific Lactobacillus strains regulates the serum levels of IL-6, TNF-α and IL-10 cytokines in a LPS-stimulated murine model. Nutrients 10: 691.
  31. Yan S, Yang B, Ross RP, Stanton C, Zhang H, Zhao J, et al. 2020. Bifidobacterium longum subsp. longum YS108R fermented milk alleviates DSS induced colitis via anti-inflammation, mucosal barrier maintenance and gut microbiota modulation. J. Funct. Foods 73: 104153.
  32. Wang Y, Liu Y, Kirpich I, Ma Z, Wang C, Zhang M, et al. 2013. Lactobacillus rhamnosus GG reduces hepatic TNFα production and inflammation in chronic alcohol-induced liver injury. J. Nutr. Biochem. 24: 1609-1615. https://doi.org/10.1016/j.jnutbio.2013.02.001
  33. Khailova L, Petrie B, Baird CH, Dominguez Rieg JA, Wischmeyer PE. 2014. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis. PLoS One 9: e97861.
  34. Zhang J, Ma JY, Li QH, Su H, Sun X. 2018. Lactobacillus rhamnosus GG induced protective effect on allergic airway inflammation is associated with gut microbiota. Cell. Immunol. 332: 77-84. https://doi.org/10.1016/j.cellimm.2018.08.002
  35. Khan TJ, Hasan MN, Azhar EI, Yasir M. 2019. Association of gut dysbiosis with intestinal metabolites in response to antibiotic treatment. Hum. Microbiome J. 11: 100054.
  36. Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. 2020. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10: 572912.
  37. Galdeano CM, Nunez IN, de Moreno de LeBlanc A, Carmuega E, Weill R, Perdigon G. 2011. Impact of a probiotic fermented milk in the gut ecosystem and in the systemic immunity using a non-severe protein-energy-malnutrition model in mice. BMC Gastroenterol. 11: 1-14. https://doi.org/10.1186/1471-230X-11-64
  38. Okoniewski A, Dobrzynska M, Kusyk P, Dziedzic K, Przyslawski J, Drzymala-Czyz S. 2023. The Role of fermented dairy products on gut microbiota composition. Fermentation 9: 231.
  39. Oh NS, Joung JY, Lee JY, Kim Y. 2018. Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PLoS One 13: e0192021.
  40. Han SK, Shin YJ, Lee DY, Kim KM, Yang SJ, Kim DS, et al. 2021. Lactobacillus rhamnosus HDB1258 modulates gut microbiota-mediated immune response in mice with or without lipopolysaccharide-induced systemic inflammation. BMC Microbiol. 21: 146.
  41. Rizzatti G, Lopetuso L, Gibiino G, Binda C, Gasbarrini A. 2017. Proteobacteria: a common factor in human diseases. Biomed Res. Int. 2017: 9351507.
  42. Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K, Tong Y, et al. 2017. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8: 15784.
  43. Lisko DJ, Johnston GP, Johnston CG. 2017. Effects of dietary yogurt on the healthy human gastrointestinal (GI) microbiome. Microorganisms 5: 6.
  44. Le Roy CI, Kurilshikov A, Leeming ER, Visconti A, Bowyer RCE, Menni C, et al. 2022. Yoghurt consumption is associated with changes in the composition of the human gut microbiome and metabolome. BMC Microbiol. 22: 39.
  45. Wu H-J, Wu E. 2012. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbe. 3: 4-14. https://doi.org/10.4161/gmic.19320
  46. Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30: 492-506. https://doi.org/10.1038/s41422-020-0332-7
  47. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. 2020. The controversial role of human gut lachnospiraceae. Microorganisms 8: 573.
  48. Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. 2011. Regulation of inflammation by short chain fatty acids. Nutrients 3: 858-876. https://doi.org/10.3390/nu3100858