과제정보
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2023-00248832). This research project was also supported by the University Emphasis Research Institute Support Program (No.2018R1A61A03023584), which is funded by National Research Foundation of Korea. Additionally, this research were supported by the Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20220042, Korea Sea Grant Program: Gangwon Sea Grant) and supported by the Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea, under the "Regional Specialized lndustry Development Pius Prograrn (R&D, S3258709)" supervised by the Korea Technology and Information Promotion Agency for SMEs (TIPA).
참고문헌
- Kim YO, Park S, Nam BH, Jung YT, Kim DG, Bae KS, et al. 2014. Description of Lutimonas halocynthiae sp. nov., isolated from a golden sea squirt (Halocynthia aurantium), reclassification of Aestuariicola saemankumensis as Lutimonas saemankumensis comb. nov. and emended description of the genus Lutimonas. Int. J. Syst. Evol. Microbiol. 64: 1984-1990. https://doi.org/10.1099/ijs.0.059923-0
- Fomenko SE, Kushnerova NF, Lesnikova LN. 2013. Experimental assessment of the efficiency of erythrocyte membrane repair by an extract of the tunic of the ascidian purple sea squirt in carbon tetrachloride poisoning. Pharm. Chem. J. 46: 606-611. https://doi.org/10.1007/s11094-013-0855-z
- Lambert G, Karney RC, Rhee WY, Carman MR. 2016. Wild and cultured edible tunicates: a review. Manag. Biol. Invasions 7: 59-66. https://doi.org/10.3391/mbi.2016.7.1.08
- Hirose E, Ohtake SI, Azumi K. 2009. Morphological characterization of the tunic in the edible ascidian, Halocynthia roretzi (Drasche), with remarks on 'soft tunic syndrome' in aquaculture. J. Fish Dis. 32: 433-445. https://doi.org/10.1111/j.1365-2761.2009.01034.x
- Van Daele Y, Revol JF, Gaill F, Goffinet G. 1992. Characterization and supramolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach (Halocynthia papillosa, Ascidiacea, Urochordata). Biol. Cell 76: 87-96. https://doi.org/10.1016/0248-4900(92)90198-A
- Song G, Delroisse J, Schoenaers D, Kim H, Nguyen TC, Horbelt N, et al. 2020. Structure and composition of the tunic in the sea pineapple Halocynthia roretzi: a complex cellulosic composite biomaterial. Acta Biomater. 111: 290-301. https://doi.org/10.1016/j.actbio.2020.04.038
- Arumugam V, Venkatesan M, Ramachandran S, Sundaresan U. 2018. Bioactive peptides from marine ascidians and future drug development-a review. J. Int. J. Peptide Res. Ther. 24: 13-18. https://doi.org/10.1007/s10989-017-9662-9
- Sawada T. 1992. Tunicates and their immune mechanism. Bull. Yamaguchi Med. Sch. 39: 83-88.
- Palanisamy SK, Rajendran NM, Marino A. 2017. Natural products diversity of marine ascidians (tunicates; ascidiacea) and successful drugs in clinical development. Nat. Prod. Bioprospect. 7: 1-111. https://doi.org/10.1007/s13659-016-0115-5
- Tabakaeva OV, Tabakaev AV. 2017. Amino acids and related compounds of the ascidian Halocynthia aurantium from the Sea of Japan. Chem. Nat. Compd. 53: 722-725. https://doi.org/10.1007/s10600-017-2099-8
- Lordan R, Tsoupras A, Zabetakis I. 2017. Phospholipids of animal and marine origin: structure, function, and anti-inflammatory properties. Molecules 22: 1964.
- Calder PC. 2015. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851: 469-484. https://doi.org/10.1016/j.bbalip.2014.08.010
- Xu B, Zhang XY, Jin HZ, Wang C. 2003. Determination of content of fat and composition of fatty acids in Ascidian. Chinese J. Mar. Drugs 22: 37-39.
- Ai-li J, Chang-hai W. 2006. Antioxidant properties of natural components from Salvia plebeia on oxidative stability of ascidian oil. Process Biochem. 41: 1111-1116. https://doi.org/10.1016/j.procbio.2005.12.001
- Viracaoundin I, Barnathan G, Gaydou EM, Aknin M. 2003. Phospholipid FA from indian ocean tunicates Eudistoma bituminis and Cystodytes violatinctus. Lipids 38: 85-88. https://doi.org/10.1007/s11745-003-1035-7
- Lee KH, Park CS, Hong BI, Jung WJ. 1993. Utilization of ascidian, Halocynthia roretzi-2. lipids of ascidian with seasonal and regional variation. Korean J. Fish Aquat. Sci. 26: 141-149.
- Mikami N, Hosokawa M, Miyashita K. 2010. Effects of sea squirt (Halocynthia roretzi) lipids on white adipose tissue weight and blood glucose in diabetic/obese KK-Ay mice. Mol. Med. Rep. 3: 449-453. https://doi.org/10.3892/mmr_00000278
- Jang A, Monmai C, Rod-In W, Kim J-E, You S, Lee TH, et al. 2021. Immune-modulation effect of Halocynthia aurantium tunic lipid on RAW264.7 cells. Food Sci. Biotechnol. 31: 101-110. https://doi.org/10.1007/s10068-021-01017-4
- Lee IH, Lee YS, Kim CH, Kim CR, Hong T, Menzel L, et al. 2001. Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. Biochim. Biophys. Acta 1527: 141-148. https://doi.org/10.1016/S0304-4165(01)00156-8
- Jang WS, Kim KN, Lee YS, Nam MH, Lee IH. 2002. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett. 521: 81-86. https://doi.org/10.1016/S0014-5793(02)02827-2
- Jang WS, Kim CH, Kim KN, Park SY, Lee JH, Son SM, et al. 2003. Biological activities of synthetic analogs of halocidin, an antimicrobial peptide from the tunicate Halocynthia aurantium. Antimicrob. Agents Chemother. 47: 2481-2486. https://doi.org/10.1128/AAC.47.8.2481-2486.2003
- Jo JE, Kim KH, Yoon MH, Kim NY, Lee C, Yook HS. 2010. Quality characteristics and antioxidant activity research of Halocynthia roretzi and Halocynthia aurantium. J. Korean Soc. Food Sci. Nutr. 39: 1481-1486. https://doi.org/10.3746/jkfn.2010.39.10.1481
- Chiji H, Hayashi C, Matsumoto M. 2001. Gastroprotective effect of Ascidian, Halocynthia aurantium (Akaboya), extract on acute gastric hemorrhagic lesions in rats, pp. 463-466. In Sawada H, Yokosawa H, Lambert CC (eds.), The Biology of Ascidians, Ed. Springer, Tokyo
- Monmai C, Go SH, Shin IS, You SG, Lee H, Kang SB, et al. 2018. Immune-enhancement and anti-inflammatory activities of fatty acids extracted from Halocynthia aurantium tunic in RAW264.7 cells. Mar. Drugs 16: 309.
- Han L, Yu J, Chen Y, Cheng D, Wang X, Wang C. 2018. Immunomodulatory activity of docosahexenoic acid on RAW264.7 cells activation through GPR120-mediated signaling pathway. J. Agric. Food Chem. 66: 926-934. https://doi.org/10.1021/acs.jafc.7b05894
- Lim JH, Choi GS, Monmai C, Rod-in W, Jang Ay, Park WJ. 2021. Immunomodulatory activities of Ammodytes personatus egg lipid in RAW264.7 cells. Molecules 26: 6027.
- Jang A, Rod-in W, Monmai C, Choi GS, Park WJ. 2022. Anti-inflammatory effects of neutral lipids, glycolipids, phospholipids from Halocynthia aurantium tunic by suppressing the activation of NF-κB and MAPKs in LPS-stimulated RAW264.7 macrophages. PLoS One 17: e0270794.
- Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/y59-099
- Christie W. 1982. Lipid analysis, pp. 2nd Ed. Pergamon Press, New York.
- Kim YS, Kim EK, Nawarathna WP, Dong X, Shin WB, Park JS, et al. 2017. Immune-stimulatory effects of Althaea rosea flower extracts through the MAPK signaling pathway in RAW264.7 cells. Molecules 22: 679.
- Xie Y, Wang L, Sun H, Wang Y, Yang Z, Zhang G, et al. 2019. Polysaccharide from alfalfa activates RAW 264.7 macrophages through MAPK and NF-κB signaling pathways. Int. J. Biol. Macromol. 126: 960-968. https://doi.org/10.1016/j.ijbiomac.2018.12.227
- Deng JJ, Li ZQ, Mo ZQ, Xu S, Mao HH, Shi D, et al. 2020. Immunomodulatory effects of N-acetyl chitooligosaccharides on RAW264.7 macrophages. Mar. Drugs 18: 421.
- Lee SH, Lee YP, Kim SY, Jeong MS, Lee MJ, Kang HW, et al. 2008. Inhibition of LPS-induced cyclooxygenase 2 and nitric oxide production by transduced PEP-1-PTEN fusion protein in RAW264.7 macrophage cells. Exp. Mol. Med. 40: 629-638. https://doi.org/10.3858/emm.2008.40.6.629
- Kim S, Lee CH, Yeo J-Y, Hwang KW, Park S-Y. 2022. Immunostimulatory activity of stem bark of Kalopanax pictus in RAW 264.7 macrophage. J. Herb. Med. 32: 100504.
- He C, Lin HY, Wang CC, Zhang M, Lin YY, Huang FY, et al. 2019. Exopolysaccharide from Paecilomyces lilacinus modulates macrophage activities through the TLR4/NF-κB/MAPK pathway. Mol. Med. Rep. 20: 4943-4952. https://doi.org/10.3892/mmr.2019.10746
- Eo HJ, Shin H, Song JH, Park GH. 2021. Immuno-enhancing effects of fruit of Actinidia polygama in macrophages. Food Agric. Immunol. 32: 754-765. https://doi.org/10.1080/09540105.2021.1982868
- Son HJ, Eo HJ, Park GH, Jeong JB. 2021. Heracleum moellendorffii root extracts exert immunostimulatory activity through TLR2/4-dependent MAPK activation in mouse macrophages, RAW264.7 cells. Food Sci. Nutr. 9: 514-521. https://doi.org/10.1002/fsn3.2020