DOI QR코드

DOI QR Code

Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes

  • Jeongik Cho (Department of Molecular Science and Technology, Ajou University) ;
  • Heymin Song (Department of Molecular Science and Technology, Ajou University) ;
  • Hyun C. Yoon (Department of Molecular Science and Technology, Ajou University) ;
  • Hyunjin Yoon (Department of Molecular Science and Technology, Ajou University)
  • Received : 2023.08.08
  • Accepted : 2023.10.17
  • Published : 2024.02.28

Abstract

Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.

Keywords

Acknowledgement

This work was supported by a grant (2021M3A9I4026029) from the Bio & Medical Technology Development Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science & ICT, and a grant (2021N100) of the Commercializations Promotion Agency for R&D Outcomes (COMPA), funded by the Korea government (MSIT).

References

  1. Crum-Cianflone NF. 2008. Salmonellosis and the gastrointestinal tract: more than just peanut butter. Curr. Gastroenterol. Rep. 10: 424-431. https://doi.org/10.1007/s11894-008-0079-7
  2. Ehuwa O, Jaiswal AK, Jaiswal S. 2021. Salmonella, food safety and food handling practices. Foods 10: 907.
  3. Popoff MY, Bockemuhl J, Brenner FW. 2000. Supplement 1998 (no. 42) to the Kauffmann-white scheme. Res. Microbiol. 151: 63-65. https://doi.org/10.1016/S0923-2508(00)00126-1
  4. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 2000. Salmonella nomenclature. J. Clin. Microbiol. 38: 2465-2467. https://doi.org/10.1128/JCM.38.7.2465-2467.2000
  5. Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Junior CA. 2019. Worldwide epidemiology of Salmonella Serovars in animal-based foods: a meta-analysis. Appl. Environ. Microbiol. 85: e00591-19.
  6. Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, de Pinna E, Nair S, et al. 2014. Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res. Microbiol. 165: 526-530. https://doi.org/10.1016/j.resmic.2014.07.004
  7. Gal-Mor O, Boyle EC, Grassl GA. 2014. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front. Microbiol. 5: 391.
  8. Zha L, Garrett S, Sun J. 2019. Salmonella infection in chronic inflammation and gastrointestinal cancer. Diseases 7: 28.
  9. Crump JA, Sjolund-Karlsson M, Gordon MA, Parry CM. 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella Infections. Clin. Microbiol. Rev. 28: 901-937. https://doi.org/10.1128/CMR.00002-15
  10. Centers for Disease Control and Prevention (CDC). 2018. National Enteric Disease Surveillance: Salmonella Annual Report, 2016. Atlanta, GA: Centers for Disease Control and Prevention. Available from https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf.
  11. Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, et al. 2022. Emergence, dissemination and antimicrobial resistance of the main poultry-associated Salmonella serovars in Brazil. Vet. Sci. 9: 405.
  12. Uelze L, Becker N, Borowiak M, Busch U, Dangel A, Deneke C, et al. 2021. Toward an integrated genome-based Surveillance of Salmonella enterica in Germany. Front. Microbiol. 12: 626941.
  13. Stott DI. 1989. Immunoblotting and dot blotting. J. Immunol. Methods 119: 153-187. https://doi.org/10.1016/0022-1759(89)90394-3
  14. Sarasombath S, Lertmemongkolchai G, Banchuin N. 1988. Characterization of monoclonal antibodies to protein antigen of Salmonella typhi. J. Clin. Microbiol. 26: 508-512. https://doi.org/10.1128/jcm.26.3.508-512.1988
  15. Jaradat ZW, Bzikot JH, Zawistowski J, Bhunia AK. 2004. Optimization of a rapid dot-blot immunoassay for detection of Salmonella enterica serovar Enteritidis in poultry products and environmental samples. Food Microbiol. 21: 761-769. https://doi.org/10.1016/j.fm.2004.01.010
  16. Park S, Yoon H. 2023. Transcriptional insight into the effect of benzalkonium chloride on resistance and virulence potential in Salmonella Typhimurium. Microbiol. Res. 266: 127240.
  17. van der Zee H. 1994. Conventional methods for the detection and isolation of Salmonella enteritidis. Int. J. Food Microbiol. 21: 41-46. https://doi.org/10.1016/0168-1605(94)90198-8
  18. Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF, et al. 2021. Advancement in Salmonella detection methods: From conventional to electrochemical-based sensing detection. Biosensors (Basel) 11: 346.
  19. Diep B, Barretto C, Portmann AC, Fournier C, Karczmarek A, Voets G, et al. 2019. Salmonella serotyping; Comparison of the traditional method to a microarray-based method and an in silico platform using whole genome sequencing data. Front. Microbiol. 10: 2554.
  20. Zou QH, Li RQ, Liu GR, Liu SL. 2016. Genotyping of Salmonella with lineage-specific genes: correlation with serotyping. Int. J. Infect. Dis. 49: 134-140. https://doi.org/10.1016/j.ijid.2016.05.029
  21. Yang SM, Kim E, Kim D, Kim HB, Baek J, Ko S, et al. 2021. Rapid real-time polymerase chain reaction for Salmonella serotyping based on novel unique gene markers by pangenome analysis. Front. Microbiol. 12: 750379.
  22. Ferone M, Gowen A, Fanning S, Scannell AGM. 2020. Microbial detection and identification methods: Bench top assays to omics approaches. Compr. Rev. Food Sci. Food Saf. 19: 3106-3129. https://doi.org/10.1111/1541-4337.12618
  23. Schenk F, Weber P, Vogler J, Hecht L, Dietzel A, Gauglitz G. 2018. Development of a paper-based lateral flow immunoassay for simultaneous detection of lipopolysaccharides of Salmonella serovars. Anal. Bioanal. Chem. 410: 863-868. https://doi.org/10.1007/s00216-017-0643-9
  24. Wang B, Park B. 2020. Immunoassay biosensing of foodborne pathogens with surface plasmon resonance imaging: A review. J. Agric. Food Chem. 68: 12927-12939. https://doi.org/10.1021/acs.jafc.0c02295
  25. Huang H, Garcia MM, Brooks BW, Nielsen K, Ng SP. 1999. Evaluation of culture enrichment procedures for use with Salmonella detection immunoassay. Int. J. Food Microbiol. 51: 85-94. https://doi.org/10.1016/S0168-1605(99)00102-6
  26. Lee HA, Wyatt GM, Bramham S, Morgan MRA. 1989. Rapid enzyme-linked immunosorbent assays for the detection of Salmonella enteritidis in eggs. Food Agric. Immunol. 1: 89-99. https://doi.org/10.1080/09540108909354679
  27. Bruce VJ, McNaughton BR. 2017. Evaluation of nanobody conjugates and protein fusions as bioanalytical reagents. Anal. Chem. 89: 3819-3823. https://doi.org/10.1021/acs.analchem.7b00470
  28. Bayrac C, Eyidogan F, Avni Oktem H. 2017. DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis. Biosens. Bioelectron. 98: 22-28. https://doi.org/10.1016/j.bios.2017.06.029
  29. Silva NFD, Magalhaes J, Freire C, Delerue-Matos C. 2018. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment. Biosens. Bioelectron. 99: 667-682. https://doi.org/10.1016/j.bios.2017.08.019
  30. Liu D, Wang J, Wu L, Huang Y, Zhang Y, Zhu M, et al. 2020. Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Anal. Chem. 122: 115701.
  31. Farhana A, Khan YS. 2003. Biochemistry, Lipopolysaccharide., pp. Ed. Treasure Island (FL): StatPearls Publishing.
  32. Bertani B, Ruiz N. 2018. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 8: 10.1128. https://doi.org/10.1128
  33. Raetz CR, Reynolds CM, Trent MS, Bishop RE. 2007. Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 76: 295-329. https://doi.org/10.1146/annurev.biochem.76.010307.145803
  34. Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  35. Whitfield C, Williams DM, Kelly SD. 2020. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J. Biol. Chem. 295: 10593-10609. https://doi.org/10.1074/jbc.REV120.009402
  36. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, et al. 2014. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 38: 56-89. https://doi.org/10.1111/1574-6976.12034
  37. Masi A, Zawistowski J. 2008. Detection of live and heat-treated Salmonella enteritidis by a D1-serospecific anti-lipopolysaccharide O-9 monoclonal antibody. Food Agric. Immunol. 7: 351-363. https://doi.org/10.1080/09540109509354895
  38. Jinapon C, Wangman P, Pengsuk C, Chaivisuthangkura P, Sithigorngul P, Longyant S. 2020. Development of monoclonal antibodies for the rapid detection and identification of Salmonella enterica serovar Enteritidis in food sample using dot-blot assays. J. Food Saf. https://doi.org/10.1111/jfs.12841.
  39. Keller LH, Benson CE, Garcia V, Nocks E, Battenfelder P, Eckroade RJ. 1993. Monoclonal antibody-based detection system for Salmonella enteritidis. Avian Dis. 37: 501-507. https://doi.org/10.2307/1591678
  40. Yoshimasu MA, Zawistowski J. 2001. Application of rapid dot blot immunoassay for detection of Salmonella enterica serovar enteritidis in eggs, poultry, and other foods. Appl. Environ. Microbiol. 67: 459-461. https://doi.org/10.1128/AEM.67.1.459-461.2001
  41. Karberg KA, Olsen GJ, Davis JJ. 2011. Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome. Proc. Natl. Acad. Sci. USA 108: 20154-20159. https://doi.org/10.1073/pnas.1109451108
  42. Hu B, Perepelov AV, Liu B, Shevelev SD, Guo D, Senchenkova SN, et al. 2010. Structural and genetic evidence for the close relationship between Escherichia coli O71 and Salmonella enterica O28 O-antigens. FEMS Immunol. Med. Microbiol. 59: 161-169. https://doi.org/10.1111/j.1574-695X.2010.00676.x
  43. Miller T, Prager R, Rabsch W, Fehlhaber K, Voss M. 2010. Epidemiological relationship between S. Infantis isolates of human and broiler origin. Lohmann. Info. 45: 27-31.
  44. Arnold K, Lim S, Rakler T, Rovira A, Satuchne C, Yechezkel E, et al. 2022. Using genetic markers for detection and subtyping of the emerging Salmonella enterica subspecies enterica serotype Muenchen. Poult. Sci. 101: 102181.
  45. Lalsiamthara J, Lee JH. 2017. Corrigendum: Pathogenic traits of Salmonella Montevideo in experimental infections in vivo and in vitro. Sci. Rep. 7: 46786.
  46. Hoffmann M, Luo Y, Monday SR, Gonzalez-Escalona N, Ottesen AR, Muruvanda T, et al. 2016. Tracing origins of the Salmonella bareilly strain causing a food-borne outbreak in the United States. J. Infect. Dis. 213: 502-508. https://doi.org/10.1093/infdis/jiv297
  47. Stromberg LR. 2016. Differential Interactions of Lipopolysaccharides with Lipid Bilayers: Applications for Pathogen Detection. Available from https://digitalrepository.unm.edu/bme_etds/9.
  48. Sturm S, Fortnagel P, Timmis KN. 1984. Immunoblotting procedure for the analysis of electrophoretically-fractionated bacterial lipopolysaccharide. Arch. Microbiol. 140: 198-201. https://doi.org/10.1007/BF00454926