Acknowledgement
This work was supported by the World Institute of Kimchi [grant number KE2301-1], funded by the Ministry of Science and ICT Republic of Korea.
References
- Lee M, Song JH, Shim WB, Chang JY. 2020. DNAzyme-based quantitative loop-mediated isothermal amplification for strain-specific detection of starter kimchi fermented with Leuconostoc mesenteroides WiKim32. Food Chem. 333: 127343.
- Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, et al. 2011. Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J. Biosci. Bioeng. 112: 356-359. https://doi.org/10.1016/j.jbiosc.2011.06.003
- Park SE, Kwon SJ, Cho KM, Seo SH, Kim EJ, Unno T, et al. 2020. Intervention with kimchi microbial community ameliorates obesity by regulating gut microbiota. J. Microbiol. 58: 859-867. https://doi.org/10.1007/s12275-020-0266-2
- Patra JK, Das G, Paramithiotis S, Shin HS. 2016. Kimchi and other widely consumed traditional fermented foods of Korea: a review. Front. Microbiol. 7: 1493.
- Mathur H, Beresford TP, Cotter PD. 2020. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients 12: 1679.
- Lee SJ, Jeon HS, Yoo JY, Kim JH. 2021. Some important metabolites produced by lactic acid bacteria originated from kimchi. Foods 10: 2148.
- Lee M, Yun YR, Choi EJ, Song JH, Kang JY, Kim D, et al. 2023. Anti-obesity effect of vegetable juice fermented with lactic acid bacteria isolated from kimchi in C57BL/6J mice and human mesenchymal stem cells. Food Funct. 14: 1349-1356.
- Lee M, Song JH, Choi EJ, Yun YR, Lee KW, Chang JY. 2021. UPLC-QTOF-MS/MS and GC-MS characterization of phytochemicals in vegetable juice fermented using lactic acid bacteria from kimchi and their antioxidant potential. Antioxidants (Basel) 10: 1761.
- Jung S, Hwang H, Lee JH. 2019. Effect of lactic acid bacteria on phenyllactic acid production in kimchi. Food Control 106: 106701.
- Zhou Q, Gu R, Xue B, Li P, Gu Q. 2021. Phenyl lactic acid alleviates Samonella typhimurium-induced colitis via regulating microbiota composition, SCFA production and inflammatory responses. Food Funct. 12: 5591-5606. https://doi.org/10.1039/D1FO00166C
- Meng DI, Sommella E, Salviati E, Campiglia P, Ganguli K, Djebali K, et al. 2020. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr. Res. 88: 209-217. https://doi.org/10.1038/s41390-019-0740-x
- Saadoun JH, Calani L, Cirlini M, Bernini V, Neviani E, Del Rio D, et al. 2021. Effect of fermentation with single and co-culture of lactic acid bacteria on okara: evaluation of bioactive compounds and volatile profiles. Food Funct. 12: 3033-3043. https://doi.org/10.1039/D0FO02916E
- Nieminen MT, Hernandez M, Novak-Frazer L, Kuula H, Ramage G, Bowyer P, et al. 2014. DL-2-hydroxyisocaproic acid attenuates inflammatory responses in a murine Candida albicans biofilm model. Clin. Vaccine Immunol. 21: 1240-1245. https://doi.org/10.1128/CVI.00339-14
- Kawai T, Autieri MV, Scalia R. 2021. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 320: C375-C391. https://doi.org/10.1152/ajpcell.00379.2020
- Rohm TV, Meier DT, Olefsky JM, Donath MY. 2022. Inflammation in obesity, diabetes, and related disorders. Immunity 55: 31-55. https://doi.org/10.1016/j.immuni.2021.12.013
- Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, et al. 2022. Adipokines, hepatokines and myokines: focus on their role and molecular mechanisms in adipose tissue inflammation. Front. Endocrinol. 13: 873699.
- Taylor EB. 2021. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. (Lond) 135: 731-752. https://doi.org/10.1042/CS20200895
- Kim E, Lee HG, Han S, Seo KH, Kim H. 2021. Effect of surface layer proteins derived from paraprobiotic kefir lactic acid bacteria on inflammation and high-fat diet-induced obesity. J. Agric. Food Chem. 69: 15157-15164. https://doi.org/10.1021/acs.jafc.1c05037
- de Nooijer AH, Kooistra EJ, Grondman I, Janssen NA, Joosten LA, van de Veerdonk FL, et al. 2023. Adipocytokine plasma concentrations reflect influence of inflammation but not body mass index (BMI) on clinical outcomes of COVID-19 patients: a prospective observational study from the Netherlands. Clin. Obes. 13: e12568.
- Ilavenil S, Kim DH, Valan Arasu M, Srigopalram S, Sivanesan R, Choi KC. 2015. Phenyllactic acid from Lactobacillus plantarum promotes adipogenic activity in 3T3-L1 adipocyte via up-regulation of PPAR- γ2. Molecules 20: 15359-15373. https://doi.org/10.3390/molecules200815359
- Huang W, Cho KY, Meng D, Walker WA. 2021. The impact of indole-3-lactic acid on immature intestinal innate immunity and development: a transcriptomic analysis. Sci. Rep. 11: 8088.
- Aoki R, Aoki-Yoshida A, Suzuki C, Takayama Y. 2018. Indole-3-pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J. Immunol. 201: 3683-3693. https://doi.org/10.4049/jimmunol.1701734
- Roager HM, Licht TR. 2018. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9: 3294.
- Ehrlich AM, Pacheco AR, Henrick BM, Taft D, Xu G, Huda MN, et al. 2020. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 20: 1-13. https://doi.org/10.1186/s12866-019-1672-7
- Chung HJ, Lee H, Kim M, Lee JW, Saeed M, Lee H, et al. 2022. Development and metabolic profiling of a postbiotic complex exhibiting antibacterial activity against skin microorganisms and anti-inflammatory effect on human keratinocytes. Food Sci. Biotechnol. 31: 1325-1334. https://doi.org/10.1007/s10068-022-01123-x
- Zhang Z, Li L, Huang G, Zhou T, Zhang X, Leng X, et al. 2021. Embelia Laeta aqueous extract suppresses acute inflammation via decreasing COX-2/iNOS expression and inhibiting NF-κB pathway. J. Ethnopharmacol. 281: 114575.
- Yadahalli R, Sarode GS, Sarode SC, Khan ZA, Vyas N, Kharat AH, et al. 2023. CC group of chemokines and associated gene expression of transcription factors: deciphering immuno-pathogenetic aspect of oral submucous fibrosis. Dis. Mon. 69: 101351.
- Jaworska J, Ropka-Molik K, Kowalczyk-Zieba I, Boruszewska D, Woclawek-Potocka I, Siemieniuch M. 2021. Expression profile of proinflammatory mediators in the placenta of mares during physiological detachment and retention of fetal membranes. Cytokine 137: 155307.
- Purzycka-Bohdan D, Nedoszytko B, Zablotna M, Glen J, Szczerkowska-Dobosz A, Nowicki RJ. 2022. Chemokine profile in psoriasis patients in correlation with disease severity and pruritus. Int. J. Mol. Sci. 23: 13330.
- Sabri A, Ziaee AA, Ostad SN, Alimoghadam K, Ghahremani MH. 2011. Crosstalk of EGF-directed MAPK signalling pathways and its potential role on EGF-induced cell proliferation and COX-2 expression in human mesenchymal stem cells. Cell Biochem. Funct. 29: 64-70. https://doi.org/10.1002/cbf.1720
- Katagiri W, Takeuchi R, Saito N, Suda D, Kobayashi T. 2022. Migration and phenotype switching of macrophages at early-phase of bone-formation by secretomes from bone marrow derived mesenchymal stem cells using rat calvaria bone defect model. J. Dent. Sci. 17: 421-429. https://doi.org/10.1016/j.jds.2021.08.012
- Sun W, Meednu N, Rosenberg A, Rangel-Moreno J, Wang V, Glanzman J, et al. 2018. B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation. Nat. Commun. 9: 5127.
- Jiang M, Gao T, Liu Y, Cao X, Li Y, Li J, et al. 2019. CD14 dictates differential activation of mesenchymal stromal cells through AKT, NF-κB and P38 signals. Biosci. Rep. 39: BSR20190807.