DOI QR코드

DOI QR Code

A Replication-Competent Retroviral Vector Expressing the HERV-W Envelope Glycoprotein is a Potential Tool for Cancer Gene Therapy

  • Byoung Kwon Kang (Department of Microbiology, Dankook University) ;
  • Yong-Tae Jung (Department of Microbiology, Dankook University)
  • 투고 : 2023.09.14
  • 심사 : 2023.11.22
  • 발행 : 2024.02.28

초록

The fusogenic membrane glycoprotein (FMG) derived from the human endogenous retrovirus-W (HERV-W) exhibits fusogenic properties, making it a promising candidate for cancer gene therapy. When cells are transfected with HERV-W FMG, they can fuse with neighboring cells expressing the receptor, resulting in the formation of syncytia. These syncytia eventually undergo cell death within a few days. In addition, it has been observed that an HERV-W env mutant, which is truncated after amino acid 483, displays increased fusogenicity compared to the wild-type HERV-W env. In this study, we observed syncytium formation upon transfection of HeLa and TE671 human cancer cells with plasmids containing the HERV-W 483 gene. To explore the potential of a semi-replication-competent retroviral (s-RCR) vector encoding HERV-W 483 for FMG-mediated cancer gene therapy, we developed two replication-defective retroviral vectors: a gag-pol vector encoding HERV-W 483 (MoMLV-HERV-W 483) and an env vector encoding VSV-G (pCLXSN-VSV-G-EGFP). When MoMLV-HERV-W 483 and pCLXSN-VSV-G-EGFP were co-transfected into HEK293T cells to produce the s-RCR vector, gradual syncytium formation was observed. However, the titers of the s-RCR virus remained consistently low. To enhance gene transfer efficiency, we constructed an RCR vector encoding HERV-W 483 (MoMLV-10A1-HERV-W 483), which demonstrated replication ability in HEK293T cells. Infection of A549 and HT1080 human cancer cell lines with this RCR vector induced syncytium formation and subsequent cell death. Consequently, both the s-RCR vector and RCR encoding HERV-W 483 hold promise as valuable tools for cancer gene therapy.

키워드

과제정보

The Department of Microbiology was supported through the Research-Focused Department Promotion & Interdisciplinary Convergence Research Project as a part of the University Innovation Support Program for Dankook University in 2022.

참고문헌

  1. Frendo JL, Olivier D, Cheynet V, Blond JL, Bouton O, Vidaud M, et al. 2003. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol. Cell Biol. 23: 3566-3574. 
  2. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785-789. 
  3. Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S, et al. 2000. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74: 3321-3329. 
  4. Chang C, Chen PT, Chang GD, Huang CJ, Chen H. 2004. Functional characterization of the placental fusogenic membrane protein syncytin. Biol. Reprod. 71: 1956-1962. 
  5. Denner J. 2016. Expression and function of endogenous retroviruses in the placenta. APMIS 124: 31-43. 
  6. Grandi N, Tramontano E. 2018. HERV envelope proteins: physiological role and pathogenic potential in cancer and autoimmunity. Front. Microbiol. 9: 462. 
  7. Shimizu K, Kaira K, Tomizawa Y, Sunaga N, Kawashima O, Oriuchi N, et al. 2014. ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br. J. Cancer 110: 2030-2039. 
  8. Kaira K, Sunose Y, Arakawa K, Sunaga N, Shimizu K, Tominaga H, et al. 2015. Clinicopathological significance of ASC amino acid transporter-2 expression in pancreatic ductal carcinoma. Histopathology 66: 234-243. 
  9. Bjerregaard B, Holck S, Christensen IJ, Larsson LI. 2006. Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol. Life Sci. 63: 1906-1911. 
  10. Huang W, Li S, Hu Y, Yu H, Luo F, Zhang Q, et al. 2011. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr. Bull. 37: 988-1000. 
  11. Larsson LI, Bjerregaard B, Wulf-Andersen L, Talts JF. 2007. Syncytin and cancer cell fusions. Sci. World J. 7: 1193-1197. 
  12. Machnik G, Klimacka-Nawrot E, Sypniewski D, Matczynska D, Galka S, Bednarek I, et al. 2014. Porcine endogenous retrovirus (PERV) infection of HEK-293 cell line alters expression of human endogenous retrovirus (HERV-W) sequences. Folia Biol. (Praha) 60: 35-46. 
  13. Lin EH, Salon C, Brambilla E, Lavillette D, Szecsi J, Cosset FL, et al. 2010. Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer. Cancer Gene. Ther. 17: 256-265.tnf 
  14. Bateman A, Bullough F, Murphy S, Emiliusen L, Lavillette D, Cosset FL, et al. 2000. Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res. 60: 1492-1497. 
  15. Diaz RM, Bateman A, Emiliusen L, Fielding A, Trono D, Russell SJ, et al. 2000. A lentiviral vector expressing a fusogenic glycoprotein for cancer gene therapy. Gene Ther. 7: 1656-1663. 
  16. Lee ES, Jin SY, Kang BK, Jung YT. 2019. Construction of replication-competent oncolytic retroviral vectors expressing R peptide-truncated 10A1 envelope glycoprotein. J. Virol. Methods 268: 32-36. 
  17. Mothes W, Sherer NM, Jin J, Zhong P. 2010. Virus cell-to-cell transmission. J. Virol. 84: 8360-8368. 
  18. Zhang J, Frolov I, Russell SJ. 2004. Gene therapy for malignant glioma using Sindbis vectors expressing a fusogenic membrane glycoprotein. J. Gene Med. 6: 1082-1091. 
  19. Cheynet V, Ruggieri A, Oriol G, Blond JL, Boson B, Vachot L, et al. 2005. Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J. Virol. 79: 5585-5593. 
  20. Drewlo S, Leyting S, Kokozidou M, Mallet F, Potgens AJ. 2006. C-Terminal truncations of syncytin-1 (ERVWE1 envelope) that increase its fusogenicity. Biol. Chem. 387: 1113-1120. 
  21. Kitao K, Tanikaga T, Miyazawa T. 2019. Identification of a post-transcriptional regulatory element in the human endogenous retroviral syncytin-1. J. Gen. Virol. 100: 662-668. 
  22. Lu YC, Chen YJ, Yu YR, Lai YH, Cheng JC, Li YF, et al. 2012. Replicating retroviral vectors for oncolytic virotherapy of experimental hepatocellular carcinoma. Oncol. Rep. 28: 21-26. 
  23. Hiraoka K, Kimura T, Logg CR, Tai CK, Haga K, Lawson GW, et al. 2007. Therapeutic efficacy of replication-competent retrovirus vector-mediated suicide gene therapy in a multifocal colorectal cancer metastasis model. Cancer Res. 67: 5345-5353. 
  24. Huang TT, Parab S, Burnett R, Diago O, Ostertag D, Hofman FM, et al. 2015. Intravenous administration of retroviral replicating vector, Toca 511, demonstrates therapeutic efficacy in orthotopic immune-competent mouse glioma model. Hum. Gene Ther. 26: 82-93. 
  25. Solly SK, Trajcevski. S, Frisen C, Holzer GW, Nelson E, Clerc B, et al. 2003. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther. 10: 30-39. 
  26. Tai CK, Wang WJ, Chen TC, Kasahara N. 2005. Single-shot, multicycle suicide gene therapy by replication-competent retrovirus vectors achieves long-term survival benefit in experimental glioma. Mol. Ther. 12: 842-851. 
  27. Twitty CG, Diago OR, Hogan DJ, Burrascano C, Ibanez CE, Jolly DJ, et al. 2016. Retroviral replicating vectors deliver cytosine deaminase leading to targeted 5-fluorouracil-mediated cytotoxicity in Multiple Human Cancer Types. Hum. Gene Ther. Methods 27: 17-31. 
  28. Kubo S, Takagi-Kimura M, Tagawa M, Kasahara N. 2019. Dual-vector prodrug activator gene therapy using retroviral replicating vectors. Cancer Gene Ther. 26: 128-135. 
  29. Qiao J, Moreno J, Sanchez-Perez L, Kottke T, Thompson J, Caruso M, et al. 2006. VSV-G pseudotyped, MuLV-based, semi-replication-competent retrovirus for cancer treatment. Gene Ther. 13: 1457-1470. 
  30. Trajcevski S, Solly SK, Frisen C, Trenado A, Cosset FL, Klatzmann D. 2005. Characterization of a semi-replicative gene delivery system allowing propagation of complementary defective retroviral vectors. J. Gene Med. 7: 276-287. 
  31. An DS, Xie Ym, Chen IS. 2001. Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J. Virol. 75: 3488-3489. 
  32. Logg CR, Logg A, Tai CK, Cannon PM, Kasahara N. 2001. Genomic stability of murine leukemia viruses containing insertions at the Env-3' untranslated region boundary. J. Virol. 75: 6989-6998. 
  33. Cheynet V, Oriol G, Mallet F. 2006. Identification of the hASCT2-binding domain of the Env ERVWE1/syncytin-1 fusogenic glycoprotein. Retrovirology 3: 41. 
  34. Chung M, Kizhatil K, Albritton LM, Gaulton GN. 1999. Induction of syncytia by neuropathogenic murine leukemia viruses depends on receptor density, host cell determinants, and the intrinsic fusion potential of envelope protein. J. Virol. 73: 9377-9385. 
  35. Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL, Kabat D. 2002. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J. Virol. 76: 6442-6452. 
  36. Yu H, Liu T, Zhao Z, Chen Y, Zeng J, Liu S, et al. 2014. Mutations in 3'-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb. Oncogene 33: 3947-3958. 
  37. Kang BK, Jung YT. 2020. Semi-replication-competent retroviral vectors expressing Gibbon ape leukemia virus fusogenic membrane glycoprotein (GALV FMG) gene for cancer gene therapy. J. Bacteriol. Virol. 50: 273-281. 
  38. Jin SY, Jung YT. 2020. Construction of a replication-competent retroviral vector for expression of the VSV-G envelope glycoprotein for cancer gene therapy. Arch. Virol. 165: 1089-1097. 
  39. Bateman AR, Harrington KJ, Kottke T, Ahmed A, Melcher AA, Gough MJ, et al. 2002. Viral fusogenic membrane glycoproteins kill solid tumor cells by nonapoptotic mechanisms that promote cross presentation of tumor antigens by dendritic cells. Cancer Res. 62: 6566-6578. 
  40. Higuchi H, Bronk SF, Bateman A, Harrington K, Vile RG, Gores GJ. 2000. Viral fusogenic membrane glycoprotein expression causes syncytia formation with bioenergetic cell death: implications for gene therapy. Cancer Res. 60: 6396-6402. 
  41. Galanis E, Bateman A, Johnson K, Diaz RM, James CD, Vile R, et al. 2001. Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum. Gene Ther. 12: 811-821. 
  42. Knerr I, Schnare M, Hermann K, Kausler S, Lehner M, Vogler T, et al. 2007. Fusogenic endogenous-retroviral syncytin-1 exerts anti-apoptotic functions in staurosporine-challenged CHO cells. Apoptosis 12 : 37-43. 
  43. Knerr I, Soder S, Licha E, Aigner T, Rascher W. 2008. Response of HEK293 and CHO cells overexpressing fusogenic syncytin-1 to mitochondrion-mediated apoptosis induced by antimycin A. J. Cell Biochem. 105: 766-775. 
  44. Soygur B, Sati L. 2016. The role of syncytins in human reproduction and reproductive organ cancers. Reproduction 152: 167-178.