Acknowledgement
We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.
References
- Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349:1731-1737. https://doi.org/10.1056/nejmra022471
- Castoldi AF, Johansson C, Onishchenko N et al (2008) Human developmental neurotoxicity of methylmercury: impact of variables and risk modifiers. Regul Toxicol Pharmacol 51:201-214. https://doi.org/10.1016/j.yrtph.2008.01.016
- Dore FY, Goulet S, Gallagher A et al (2001) Neurobehavioral changes in mice treated with methylmercury at two different stages of fetal development. Neurotoxicol Teratol 23:463-472. https://doi.org/10.1016/s0892-0362(01)00167-2
- Sakamoto M, Kakita A, Wakabayashi K, Takahashi H, Nakano A, Akagi H (2002) Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: a study with consecutive and moderate dose exposure throughout gestation and lactation periods. Brain Res 949:51-59. https://doi.org/10.1016/s0006-8993(02)02964-5
- Dare E, Fetissov S, Hokfelt T, Hall H, Ogren SO, Ceccatelli S (2003) Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D2 receptor binding. Naunyn Schmiedebergs Arch Pharmacol 367:500-508. https://doi.org/10.1007/s00210-003-0716-5
- Goulet S, Dore FY, Mirault ME (2003) Neurobehavioral changes in mice chronically exposed to methylmercury during fetal and early postnatal development. Neurotoxicol Teratol 25:335-347. https://doi.org/10.1016/s0892-0362(03)00007-2
- Carratu MR, Borracci P, Coluccia A et al (2006) Acute exposure to methylmercury at two developmental windows: focus on neurobehavioral and neurochemical effects in rat offspring. Neuroscience 141:1619-1629. https://doi.org/10.1016/j.neuroscience.2006.05.017
- Ke T, Tinkov AA, Skalny AV et al (2021) Developmental exposure to methylmercury and ADHD, a literature review of epigenetic studies. Environ Epigenet 7:dvab014. https://doi.org/10.1093/eep/dvab014
- Montgomery KS, Mackey J, Thuett K, Ginestra S, Bizon JL, Abbott LC (2008) Chronic, low-dose prenatal exposure to methylmercury impairs motor and mnemonic function in adult C57/B6 mice. Behav Brain Res 191:55-61. https://doi.org/10.1016/j.bbr.2008.03.008
- Loan A, Leung JWH, Coo DP et al (2023) Prenatal low-dose methylmercury exposure causes premature neuronal differentiation and autism-like behaviors in a rodent model. iScience 26:106093. https://doi.org/10.1016/j.isci.2023.106093
- Onishchenko N, Tamm C, Vahter M et al (2007) Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice. Toxicol Sci 97:428-437. https://doi.org/10.1093/toxsci/kf199
- Sakamoto M, Nakano A, Kajiwara Y, Naruse I, Fujisaki T (1993) Effects of methylmercury in postnatal developing rats. Environ Res 61:43-50. https://doi.org/10.1006/enrs.1993.1048
- Wakabayashi K, Kakita A, Sakamoto M, Su M, Iwanaga K, Ikuta F (1995) Variability of brain lesions in rats administered methylmercury at various postnatal development phases. Brain Res 705:267-272. https://doi.org/10.1016/0006-8993(95)01208-7
- Dietrich MO, Mantese CE, Anjos GD, Souza DO, Farina M (2005) Motor impairment induced by oral exposure to methylmercury in adult mice. Environ Toxicol Pharmacol 19:169-175. https://doi.org/10.1016/j.etap.2004.07.004
- Shinoda Y, Yamada Y, Yoshida E et al (2021) Hypoalgesia and recovery in methylmercury-exposed rats. J Toxicol Sci 46:303-309. https://doi.org/10.2131/jts.46.303
- Fujimura M, Usuki F, Sawada M, Takashima A (2009) Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. Neurotoxicology 30:1000-1007. https://doi.org/10.1016/j.neuro.2009.08.001
- Nakagawasai O, Onogi H, Mitazaki S et al (2010) Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel alpha1B subunit. Behav Brain Res 208:224-230. https://doi.org/10.1016/j.bbr.2009.11.042
- Lee CW, Hsu LF, Wu IL et al (2022) Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J Hazard Mater 430:128431. https://doi.org/10.1016/j.jhazmat.2023.131398
- Takahashi K, Nakagawasai O, Sakuma W et al (2019) Prenatal treatment with methylazoxymethanol acetate as a neurodevelopmental disruption model of schizophrenia in mice. Neuropharmacology 150:1-14. https://doi.org/10.1016/j.neuropharm.2019.02.034
- Matsuoka Y, Furuyashiki T, Yamada K et al (2005) Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci U S A 102:16066-16071. https://doi.org/10.1073/pnas.0504908102
- Takahashi K, Nakagawasai O, Nemoto W et al (2018) Memantine ameliorates depressive-like behaviors by regulating hippocampal cell proliferation and neuroprotection in olfactory bulbectomized mice. Neuropharmacology 137:141-155. https://doi.org/10.1016/j.neuropharm.2018.04.013
- Nakagawasai O, Yamada K, Sakuma W et al (2021) A novel dipeptide derived from porcine liver hydrolysate induces recovery from physical fatigue in a mouse model. J Funct Foods 76:104312. https://doi.org/10.1016/j.jf.2020.104312
- Santos AAD, Hort MA, Culbreth M et al (2016) Methylmercury and brain development: a review of recent literature. J Trace Elem Med Biol 38:99-107. https://doi.org/10.1016/j.jtemb.2016.03.001
- Fagundes BHF, Nascimento PC, Aragao WAB et al (2022) Methylmercury exposure during prenatal and postnatal neurodevelopment promotes oxidative stress associated with motor and cognitive damages in rats: an environmental-experimental toxicology study. Toxicol Rep 9:563-574. https://doi.org/10.1016/j.toxrep.2022.02.014
- Eto K, Takeuchi T (1978) A pathological study of prolonged cases of Minamata disease. With particular reference to 83 autopsy cases. Acta Pathol Jpn 28:565-584. https://doi.org/10.1111/j.1440-1827.1978.tb00896.x
- Hiraoka H, Nomura R, Takasugi N et al (2021) Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain. Arch Toxicol 95:1241-1250. https://doi.org/10.1007/s00204-021-02982-9
- Nomura R, Takasugi N, Hiraoka H et al (2022) Alterations in UPR signaling by methylmercury trigger neuronal cell death in the mouse brain. Int J Mol Sci 23:15412. https://doi.org/10.3390/ijms232315412
- Fujimura M, Usuki F (2017) Site-specific neural hyperactivity via the activation of MAPK and PKA/CREB pathways triggers neuronal degeneration in methylmercury-intoxicated mice. Toxicol Lett 271:66-73. https://doi.org/10.1016/j.toxlet.2017.03.001
- Fujimura M, Usuki F (2017) In situ different antioxidative systems contribute to the site-specific methylmercury neurotoxicity in mice. Toxicology 392:55-63. https://doi.org/10.1016/j.tox.2017.10.004
- Fujimura M, Unoki T (2022) Preliminary evaluation of the mechanism underlying vulnerability/resistance to methylmercury toxicity by comparative gene expression profiling of rat primary cultured cerebrocortical and hippocampal neurons. J Toxicol Sci 47:211-219. https://doi.org/10.2131/jts.47.211
- Bittencourt LO, Dionizio A, Nascimento PC et al (2019) Proteomic approach underlying the hippocampal neurodegeneration caused by low doses of methylmercury after long-term exposure in adult rats. Metallomics 11:390-403. https://doi.org/10.1039/c8mt00297e
- Silman AK, Chhabria R, Hafzalla GW et al (2022) Impairment in working memory and executive function associated with mercury exposure in indigenous populations in upper amazonian peru. Int J Environ Res Public Health 19:10989. https://doi.org/10.3390/ijerph191710989
- Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105-111. https://doi.org/10.1007/978-1-4939-8994-2_10