DOI QR코드

DOI QR Code

Lysine-63-linked polyubiquitination: a principal target of cadmium carcinogenesis

  • Received : 2023.12.10
  • Accepted : 2024.03.27
  • Published : 2024.07.15

Abstract

Cadmium is an environmental pollutant that constitutes a major danger to human health. It is considered a definite human carcinogen. The lung and kidney are the most sensitive organs for cancer development, and we recently provided the first evidence of direct upregulation of lysine-63-linked polyubiquitination by cadmium, particularly in response to environmentally relevant concentrations. Investigations of K63 polyubiquitination have greatly progressed, and various strategies have been reported for studying this molecular process in different biological systems under both physiological and stress conditions. Furthermore, the mechanisms underlying cadmium-induced accumulation of K63-polyubiquitinated proteins in lung and renal cells continue to be of interest given the unknown mechanism involved in the carcinogenesis of this metal. Cadmium is persistent within the cytosol and induces oxidative stress, which continuously damages proteins and causes K63 polyubiquitination, leading to the regulation/activation of different cellular signaling pathways. The aim of this review was to perform a critical analysis of the knowledge about K63 polyubiquitination induced by cadmium and its effect on selective autophagy, CYLD, the NF-KB pathway and Hif-1α. We also report data obtained in different experimental studies using cadmium, highlighting similarities in the induction of the ubiquitination system. A more detailed discussion will concern the role of K63 polyubiquitination in cadmium-exposed renal proximal convoluted tubules and lung cells since they are suitable model systems that are extremely sensitive to environmental stress, and cadmium is one of the most carcinogenic metals to which humans are exposed. We ultimately concluded that K63 polyubiquitination may be the origin of cadmium carcinogenesis in the lung and kidney.

Keywords

Acknowledgement

The author would like to extend their sincere appreciation to University of Jendouba Tunisia. The author would like to thank Baharia Mograbi and Helene Desqueyroux for helpful discussions, and the team AJE for proofreading and improving the clarity and readability of the English of our manuscript.

References

  1. Huf J, Lunn RM, Waalkes MP, Tomatis L, Infante PF (2007) Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health 13:202-212. https://doi.org/10.1179/oeh.2007.13.2.202 
  2. Hartwig A (2013) Cadmium and cancer. Met Ions Life Sci 11:491-507. https://doi.org/10.1007/978-94-007-5179-8_15 
  3. Eriksen KT, Halkjaer J, Meliker JR, McElroy JA, Sorensen M, Tjonneland A, Raaschou-Nielsen O (2015) Dietary cadmium intake and risk of prostate cancer: a danish prospective cohort study. BMC Cancer 15:177. https://doi.org/10.1186/s12885-015-1153-9 
  4. Jk S, Luo H, Yin Xh, Gl H, Sy L, Dr L, Yuan DB, Zhang W, Jg Z (2015) Association between cadmium exposure and renal cancer risk: a meta-analysis of observational studies. Sci Rep 5:17976. https://doi.org/10.1038/srep17976 
  5. World Health O (2019) Preventing disease through healthy environments: exposure to cadmium: a major public health concern. World Health Organization. https://iris.who.int/handle/10665/329480 
  6. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17:3782. https://doi.org/10.3390/ijerph17113782 
  7. Li Y, Li S, Wu H (2022) Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells 11:851. https://doi.org/10.3390/cells11050851 
  8. Lee JY, Tokumoto M, Fujiwara Y, Satoh M (2015) Involvement of ubiquitin-coding genes in cadmium-induced protein ubiquitination in human proximal tubular cells. J Toxicol Sci 40:901-908. https://doi.org/10.2131/jts.40.901 
  9. Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121:31-42. https://doi.org/10.1093/toxsci/kfr031 
  10. Gitan RS, Eide DJ (2000) Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochem J 346:329-336. https://doi.org/10.1042/bj3460329 
  11. Mansour MA (2018) Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol 101:80-93. https://doi.org/10.1016/j.biocel.2018.06.001 
  12. Abderrahmen Chargui AB, Hashem A, Al-Hazzani AA, Fathi Abd_Allah E, Hammami I, Nahdi A, Marzougui S, Hofman P, Elmay M, Mograbi B (2023) Roles of lysine-63-linked ubiquitination on Hif-1α in cell fate decisions between cell proliferation and apoptosis under cadmium effects in epithelial cells. Preprint (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-3715543/v1 
  13. Chargui A, Belaid A, Ndiaye PD, Imbert V, Samson M, Guigonis JM, Tauc M, Peyron JF, Poujeol P, Brest P, Hofman P, Mograbi B (2021) The carcinogen cadmium activates lysine 63 (K63)-linked ubiquitin-dependent signaling and inhibits selective autophagy. Cancers (Basel) 13:2490. https://doi.org/10.3390/cancers13102490 
  14. Damgaard RB (2021) The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ 28:423-426. https://doi.org/10.1038/s41418-020-00703-w 
  15. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425-479. https://doi.org/10.1146/annurev.biochem.67.1.425 
  16. Suryadinata R, Holien JK, Yang G, Parker MW, Papaleo E, Sarcevic B (2013) Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34. Cell Cycle 12:1732-1744. https://doi.org/10.4161/cc.24818 
  17. Meyer HJ, Rape M (2014) Enhanced protein degradation by branched ubiquitin chains. Cell 157:910-921. https://doi.org/10.1016/j.cell.2014.03.037 
  18. Cao L, Liu X, Zheng B, Xing C, Liu J (2022) Role of K63-linked ubiquitination in cancer. Cell Death Discov 8:410. https://doi.org/10.1038/s41420-022-01204-0 
  19. Dosa A, Csizmadia T (2022) The role of K63-linked polyubiquitin in several types of autophagy. Biol Futur 73:137-148. https://doi.org/10.1007/s42977-022-00117-4 
  20. Liu P, Gan W, Su S, Hauenstein AV, Fu TM, Brasher B, Schwerdtfeger C, Liang AC, Xu M, Wei W (2018) K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Sci Signal 11:eaar8133. https://doi.org/10.1126/scisignal.aar8133 
  21. Morgan EL, Chen Z, Van Waes C (2020) Regulation of NFκB signalling by ubiquitination: a potential therapeutic target in head and neck squamous cell carcinoma? Cancers (Basel) 12:2877. https://doi.org/10.3390/cancers12102877 
  22. Chen R-H, Chen Y-H, Huang T-Y (2019) Ubiquitin-mediated regulation of autophagy. J Biomed Sci 26:80. https://doi.org/10.1186/s12929-019-0569-y 
  23. Jiang X, Chen ZJ (2011) The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 12:35-48. https://doi.org/10.1038/nri3111 
  24. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363-397. https://doi.org/10.1146/annurev.biochem.78.082307.091526 
  25. Abderrahman Chargui AB, Djerbi N, May MVE, Mograbi B (2013) Autophagy: a major target of cadmium nephrotoxicity. Curr Chem Biol 7:177-187. https://doi.org/10.2174/2212796811307020009 
  26. Unsal V, Dalkiran T, Cicek M, Kolukcu E (2020) The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Adv Pharm Bull 10:184-202. https://doi.org/10.34172/apb.2020.023 
  27. Liu C, Li HJ, Duan WX, Duan Y, Yu Q, Zhang T, Sun YP, Li YY, Liu YS, Xu SC (2023) MCU upregulation overactivates mitophagy by promoting vdac1 dimerization and ubiquitination in the hepatotoxicity of cadmium. Adv Sci (Weinh) 10:e2203869. https://doi.org/10.1002/advs.202203869 
  28. Li X, Yao Z, Yang D, Jiang X, Sun J, Tian L, Hu J, Wu B, Bai W (2020) Cyanidin-3-O-glucoside restores spermatogenic dysfunction in cadmium-exposed pubertal mice via histone ubiquitination and mitigating oxidative damage. J Hazard Mater 387:121706. https://doi.org/10.1016/j.jhazmat.2019.121706 
  29. Yen AH, Yang JL (2010) Cdc20 proteolysis requires p38 MAPK signaling and Cdh1-independent APC/C ubiquitination during spindle assembly checkpoint activation by cadmium. J Cell Physiol 223:327-334. https://doi.org/10.1002/jcp.22038 
  30. Figueiredo-Pereira ME, Yakushin S, Cohen G (1998) Disruption of the intracellular sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. J Biol Chem 273:12703-12709. https://doi.org/10.1074/jbc.273.21.12703 
  31. Chora S, McDonagh B, Sheehan D, Starita-Geribaldi M, Romeo M, Bebianno MJ (2008) Ubiquitination and carbonylation as markers of oxidative-stress in Ruditapes decussatus. Mar Environ Res 66:95-97. https://doi.org/10.1016/j.marenvres.2008.02.034 
  32. Brunt JJ, Khan S, Heikkila JJ (2012) Sodium arsenite and cadmium chloride induction of proteasomal inhibition and HSP accumulation in xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol C Toxicol Pharmacol 155:307-317. https://doi.org/10.1016/j.cbpc.2011.09.011 
  33. Uekusa H, Namimatsu M, Hiwatashi Y, Akimoto T, Nishida T, Takahashi S, Takahashi Y (2009) Cadmium interferes with the degradation of ATF5 via a post-ubiquitination step of the proteasome degradation pathway. Biochem Biophys Res Commun 380:673-678. https://doi.org/10.1016/j.bbrc.2009.01.158 
  34. Cecarini V, Bonfli L, Cuccioloni M, Mozzicafreddo M, Rossi G, Buizza L, Uberti D, Angeletti M, Eleuteri AM (2012) Crosstalk between the ubiquitin-proteasome system and autophagy in a human cellular model of alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 1822:1741-1751. https://doi.org/10.1016/j.bbadis.2012.07.015 
  35. Deng L, Meng T, Chen L, Wei W, Wang P (2020) The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 5:11. https://doi.org/10.1038/s41392-020-0107-0 
  36. Manohar S, Jacob S, Wang J, Wiechecki KA, Koh HWL, Simoes V, Choi H, Vogel C, Silva GM (2019) Polyubiquitin chains linked by lysine residue 48 (K48) selectively target oxidized proteins in vivo. Antioxid Redox Signal 31:1133-1149. https://doi.org/10.1089/ars.2019.7826 
  37. Tan JMM, Wong ESP, Kirkpatrick DS, Pletnikova O, Ko HS, Tay S-P, Ho MWL, Troncoso J, Gygi SP, Lee MK, Dawson VL, Dawson TM, Lim K-L (2007) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17:431-439. https://doi.org/10.1093/hmg/ddm320 
  38. Duncan LM, Piper S, Dodd RB, Saville MK, Sanderson CM, Luzio JP, Lehner PJ (2006) Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. Embo j 25:1635-1645. https://doi.org/10.1038/sj.emboj.7601056 
  39. Wang C, Wang X (2015) The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim Biophys Acta 1852:188-194. https://doi.org/10.1016/j.bbadis.2014.07.028 
  40. Tarhonska K, Lesicka M, Janasik B, Roszak J, Reszka E, Braun M, Kolacinska-Wow A, Jablonska E (2022) Cadmium and breast cancer-current state and research gaps in the underlying mechanisms. Toxicol Lett 361:29-42. https://doi.org/10.1016/j.toxlet.2022.03.003 
  41. Figueiredo-Pereira ME, Li Z, Jansen M, Rockwell P (2002) N-acetylcysteine and celecoxib lessen cadmium cytotoxicity which is associated with cyclooxygenase-2 up-regulation in mouse neuronal cells. J Biol Chem 277:25283-25289. https://doi.org/10.1074/jbc.M109145200 
  42. Chmielowska-Bak J, Izbianska K, Deckert J (2013) The toxic doppelganger: on the ionic and molecular mimicry of cadmium. Acta Biochim Pol 60:369-374. https://bibliotekanauki.pl/articles/1039533  1039533
  43. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274-308. https://doi.org/10.1016/j.taap.2004.09.007 
  44. Fabio A, Benny Danilo B, Rocco C, Giuseppe F, Simona F, Giovanni N, Dritan S (2010) Crystallographic analysis of metal-ion binding to human ubiquitin. Chem Eur J 17:1569-1578. https://doi.org/10.1002/chem.201001617 
  45. Camara-Artigas A, Plaza-Garrido M, Martinez-Rodriguez S, Bacarizo J (2016) New crystal form of human ubiquitin in the presence of magnesium. Acta Crystallogr F Struct Biol Commun 72:29-35. https://doi.org/10.1107/s2053230x15023390 
  46. Zhang S, Hao S, Qiu Z, Wang Y, Zhao Y, Li Y, Gao W, Wu Y, Liu C, Xu X, Wang H (2019) Cadmium disrupts the DNA damage response by destabilizing RNF168. Food Chem Toxicol 133:110745. https://doi.org/10.1016/j.fct.2019.110745 
  47. Liu EY, Ryan KM (2012) Autophagy and cancer-issues we need to digest. J Cell Sci 125:2349-2358. https://doi.org/10.1242/jcs.093708 
  48. Choi KS (2012) Autophagy and cancer. Exp Mol Med 44:109-120. https://doi.org/10.3858/emm.2012.44.2.033 
  49. Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stenmark H, Simonsen A, Yamamoto A (2010) The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 38:265-279. https://doi.org/10.1016/j.molcel.2010.04.007 
  50. Zhang L, Hu JJ, Gong F (2011) MG132 inhibition of proteasome blocks apoptosis induced by severe DNA damage. Cell Cycle 10:3515-3518. https://doi.org/10.4161/cc.10.20.17789 
  51. Pohl C, Dikic I (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366:818-822. https://doi.org/10.1126/science.aax3769 
  52. Liuzzi JP, Pazos R (2020) Interplay between autophagy and zinc. J Trace Elem Med Biol 62:126636. https://doi.org/10.1016/j.jtemb.2020.126636 
  53. Shi CS, Kehrl JH (2010) TRAF6 and A20 regulate lysine 63-linked ubiquitination of beclin-1 to control TLR4-induced autophagy. Sci Signal 3:ra42. https://doi.org/10.1126/scisignal.2000751 
  54. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259-269. https://doi.org/10.1016/j.molcel.2009.04.026 
  55. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17:1-382. https://doi.org/10.1080/15548627.2020.1797280 
  56. Thevenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221-239. https://doi.org/10.1016/j.taap.2009.01.013 
  57. Lork M, Verhelst K, Beyaert R (2017) CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Difier 24:1172-1183. https://doi.org/10.1038/cdd.2017.46 
  58. Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P, Gevaert K, Beyaert R (2011) T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. Embo j 30:1742-1752. https://doi.org/10.1038/emboj.2011.85 
  59. Hinz M, Scheidereit C (2014) The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep 15:46-61. https://doi.org/10.1002/embr.201337983 
  60. Jia L, Gopinathan G, Sukumar JT, Gribben JG (2012) Blocking autophagy prevents bortezomib-induced NF-κB activation by reducing I-κBα degradation in lymphoma cells. PLoS One 7:e32584. https://doi.org/10.1371/journal.pone.0032584 
  61. Moroz E, Carlin S, Dyomina K, Burke S, Thaler HT, Blasberg R, Serganova I (2009) Real-time imaging of HIF-1alpha stabilization and degradation. PLoS One 4:e5077. https://doi.org/10.1371/journal.pone.0005077 
  62. Gaber T, Dziurla R, Tripmacher R, Burmester GR, Buttgereit F (2005) Hypoxia inducible factor (HIF) in rheumatology: low O2! See what HIF can do! Ann Rheum Dis 64:971-980. https://doi.org/10.1136/ard.2004.031641 
  63. Li Q, Chen H, Huang X, Costa M (2006) Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1alpha) and HIF-regulated genes. Toxicol Appl Pharmacol 213:245-255. https://doi.org/10.1016/j.taap.2005.11.006 
  64. Branca JJV, Fiorillo C, Carrino D, Paternostro F, Taddei N, Gulisano M, Pacini A, Becatti M (2020) Cadmium-induced oxidative stress: focus on the central nervous system. Antioxidants (Basel) 9:492. https://doi.org/10.3390/antiox9060492 
  65. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9-19. https://doi.org/10.1097/WOX.0b013e3182439613 
  66. Driessen A, Landuyt W, Pastorekova S, Moons J, Goethals L, Haustermans K, Nafteux P, Penninckx F, Geboes K, Lerut T, Ectors N (2006) Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas. Ann Surg 243:334-340. https://doi.org/10.1097/01.sla.0000201452.09591.f3 
  67. Zhou YD, Kim YP, Li XC, Baerson SR, Agarwal AK, Hodges TW, Ferreira D, Nagle DG (2004) Hypoxia-inducible factor-1 activation by (-)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J Nat Prod 67:2063-2069. https://doi.org/10.1021/np040140c 
  68. Triantafyllou A, Liakos P, Tsakalof A, Chachami G, Paraskeva E, Molyvdas PA, Georgatsou E, Simos G, Bonanou S (2007) The flavonoid quercetin induces hypoxia-inducible factor-1alpha (HIF1-alpha) and inhibits cell proliferation by depleting intracellular iron. Free Radic Res 41:342-356. https://doi.org/10.1080/10715760601055324 
  69. Triantafyllou A, Mylonis I, Simos G, Bonanou S, Tsakalof A (2008) Flavonoids induce HIF-1alpha but impair its nuclear accumulation and activity. Free Radic Biol Med 44:657-670. https://doi.org/10.1016/j.freeradbiomed.2007.10.050 
  70. Hossein-Khannazer N, Azizi G, Eslami S, Alhassan Mohammed H, Fayyaz F, Hosseinzadeh R, Usman AB, Kamali AN, Mohammadi H, Jadidi-Niaragh F, Dehghanifard E, Noorisepehr M (2020) The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol 42:1-8. https://doi.org/10.1080/08923973.2019.1697284