DOI QR코드

DOI QR Code

음성 떨림 측정을 위한 AVTI(Acoustic Voice Tremor index)의 개발과 검증

Acoustic Voice Tremor index in the measurement of voice tremor: Development and validation

  • 김근효 (부산대학교병원 이비인후과, 의생명연구원) ;
  • 이연우 (고신대학교 언어치료학과)
  • Geun-Hyo Kim (Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital) ;
  • Yeon-Woo Lee (Department of Speech-Language Pathology, Kosin University)
  • 투고 : 2024.05.13
  • 심사 : 2024.06.10
  • 발행 : 2024.06.30

초록

본 연구에서는 음성 떨림의 음향학적 측정을 위해서 AVTI(Acoustic Voice Tremor index)를 개발하고 검증하는 것을 목표로 한다. 정상 성인 71명, 음성 떨림 환자 41명이 참여하였으며, 모음/아 /를 5초 이상 녹음하였다. 모음 안정구간 3초를 편집하여 Praat 스크립트를 이용하여 음성 떨림 관련 18개의 변수 측정값을 확인하였다. 이 변수들과 청지각적 평가 전반적 중증도(overall severity, OS)를 이용하여 선형 회귀분석을 돌려 AVTI를 구성하였다. 선형 회귀분석 결과, 18개 중 4개의 변수가 유의미하게 확인되고 회귀식이 구성되었다. 내부/외부 타당도 조사에서도 평균 0.8 이상의 높은 연관성을 나타내었다. AVTI는 OS와 0.841의 높은 상관관계를 보였다. AVTI를 통해서 음성 떨림을 예측할 수 있었다. 후속 연구에서는 더욱 많은 음성샘플과 보완된 Praat script를 추가 분석해 볼 필요성이 있을 것으로 생각된다.

The aim of this study was to develop and validate the Acoustic Voice Tremor index (AVTI) for the acoustic measurement of voice tremor. A total of 71 normal adults and 41 patients with voice tremor participated in the study. Vowels /a/ were recorded for at least five seconds. Three seconds of vowel stable duration were edited to identify measures of 18 variables related to voice tremor using a Praat script. These variables and the overall severity (OS) of auditory-perceptual assessment were used to design the AVTI using linear regression analysis. The linear regression analysis identified four out of the 18 variables as significant, and a regression equation was constructed. Furthermore, internal and external validity studies demonstrated high correlations, with an average of over 0.8. The AVTI demonstrated a high correlation of 0.841 with OS. The AVTI was found to be capable of predicting voice tremor. Further studies should include a larger number of voice samples and a complementary Praat script for further analysis.

키워드

참고문헌

  1. Anand, S., Shrivastav, R., Wingate, J. M., & Chheda, N. N. (2012). An acoustic-perceptual study of vocal tremor. Journal of Voice, 26(6), 811.E1-811.E7. https://doi.org/10.1016/j.jvoice.2010.10.005
  2. Awan, S. N., & Roy, N. (2006). Toward the development of an objective index of dysphonia severity: A four-factor acoustic model. Clinical Linguistics & Phonetics, 20(1), 35-49. https://doi.org/10.1080/02699200400008353
  3. Boersma, P., & Weenink, D. (2024). Praat: Doing phonetics by computer (version 6.4.05) [Computer program]. Retrieved from http://www.praat.org
  4. Brin, M. F., Fahn, S., Blitzer, A., Ramig, L. O., & Stewart, C. (1992). Movement disorders of the larynx. In Neurologic disorders of the larynx (pp. 248-278). New York, NY: Thieme Medical.
  5. Bruckl, M. (2012, September). Vocal tremor measurement based on autocorrelation of contours. Proceedings of the 13th Annual Conference of the International Speech Communication Association 2012 (Interspeech 2012), (pp. 715-718). Portland, OR.
  6. Bruckl, M. (2021). Tremor.praat 3.05 [Praat script]. Retrieved from http://www.brykl.de/tremor3.05.zip
  7. Bruckl, M., Ghio, A., & Viallet, F. (2018). Measurement of tremor in the voices of speakers with Parkinson's disease. Procedia Computer Science, 128, 47-54.
  8. Dromey, C., Reese, L., & Arden Hopkin, J. A. (2009). Laryngeal-level amplitude modulation in vibrato. Journal of Voice, 23(2), 156-163.
  9. Gamboa, J., Jimenez-Jimenez, F. J., Nieto, A., Cobeta, I., Vegas, A., Orti-Pareja, M., Gasalla, T., ... Garcia-Albea, E. (1998). Acoustic voice analysis in patients with essential tremor. Journal of Voice, 12(4), 444-452. https://doi.org/10.1016/S0892-1997(98)80053-2
  10. Graham, M. H. (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84(11), 2809-2815. https://doi.org/10.1890/02-3114
  11. Kempster, G. B., Gerratt, B. R., Verdolini Abbott, K., Barkmeier-Kraemer, J., & Hillman, R. E. (2009). Consensus auditory-perceptual evaluation of voice: Development of a standardized clinical protocol. American Journal of Speech-Language Pathology, 18(2), 124-132. https://doi.org/10.1044/1058-0360(2008/08-0017)
  12. Kent, R. D., Kent, J. F., Duffy, J. R., Thomas, J. E., Weismer, G., & Stuntebeck, S. (2000). Ataxic dysarthria. Journal of Speech, Language, and Hearing Research, 43(5), 1275-1289. https://doi.org/10.1044/jslhr.4305.1275
  13. Kreiman, J., Gerratt, B. R., Kempster, G. B., Erman, A., & Berke, G. S. (1993). Perceptual evaluation of voice quality: Review, tutorial, and a framework for future research. Journal of Speech, Language, and Hearing Research, 36(1), 21-40. https://doi.org/10.1044/jshr.3601.21
  14. Latoszek, B. B., Maryn, Y., Gerrits, E., & De Bodt, M. (2017). The acoustic breathiness index (ABI): A multivariate acoustic model for breathiness. Journal of Voice, 31(4), 511.E11-511.E27.
  15. Lundy, D. S., Roy, S., Xue, J. W., Casiano, R. R., & Jassir, D. (2004). Spastic/spasmodic vs. tremulous vocal quality: Motor speech profile analysis. Journal of Voice, 18(1), 146-152. https://doi.org/10.1016/j.jvoice.2003.12.001
  16. Maryn, Y., De Bodt, M., & Roy, N. (2010). The acoustic voice quality index: Toward improved treatment outcomes assessment in voice disorders. Journal of Communication Disorders, 43(3), 161-174. https://doi.org/10.1016/j.jcomdis.2009.12.004
  17. Maryn, Y., Leblans, M., Zarowski, A., & Barkmeier-Kraemer, J. (2019). Objective acoustic quantification of perceived voice tremor severity. Journal of Speech, Language, and Hearing Research, 62(10), 3689-3705. https://doi.org/10.1044/2019_JSLHR-S-19-0024
  18. Oguz, H., Tunc, T., Safak, M. A., Inan, L., Kargin, S., & Demirci, M. (2006). Objective voice changes in nondysphonic Parkinson's disease patients. Journal of Otolaryngology, 35(5), 349-354. https://doi.org/10.2310/7070.2005.0130