DOI QR코드

DOI QR Code

Short Wave Infrared Imaging for Auroral Physics and Aeronomy Studies

  • Trond S. Trondsen (Keo Scientific Ltd.) ;
  • John Meriwether (Center for Solar-Terrestrial Research, New Jersey Institute of Technology) ;
  • Craig Unick (Keo Scientific Ltd.) ;
  • Andrew Gerrard (Center for Solar-Terrestrial Research, New Jersey Institute of Technology) ;
  • Matthew Cooper (Center for Solar-Terrestrial Research, New Jersey Institute of Technology) ;
  • Devin Wyatt (Keo Scientific Ltd.)
  • Received : 2024.03.06
  • Accepted : 2024.05.10
  • Published : 2024.06.15

Abstract

Advances in solar-terrestrial physics are generally linked to the development of innovative new sensor technologies, affording us ever better sensitivity, higher resolution, and broader spectral response. Recent advances in low-noise InGaAs sensor technology have enabled the realization of low-light-level scientific imaging within the short-wave infrared (SWIR) region of the electromagnetic spectrum. This paper describes a new and highly sensitive ultra-wide angle imager that offers an expansion of auroral and airglow imaging capabilities into the SWIR spectral range of 900-1,700 nm. The imager has already proven successful in large-area remote sensing of mesospheric temperatures and in providing intensity maps showing the propagation and dissipation of atmospheric gravity waves and ripples. The addition of an automated filter wheel expands the range of applications of an already versatile SWIR detector. Several potential applications are proposed herein, with an emphasis on auroral science. The combined data from this type of instrument and other existing instrumentation holds a strong potential to further enhance our understanding of the geospace environment.

Keywords

Acknowledgement

Trond S. Trondsen wishes to thank Stephen Mende for valuable discussions, going back to 2011, on the topic of determining the source of electron aurora precipitation by optical techniques. John Meriwether wishes to acknowledge the 2023 Defense University Research Instrumentation Program (DURIP) for funding support (FA9550-23-1-0412) of the acquisition of the Keo Sentry-SWIR imager to the Center for Solar-Terrestrial Research at the New Jersey Institute of Technology. We thank Charles Mutiso and Matthew Zettergren (Embry-Riddle Aeronautical University) for their helpful comments on the application of SWIR imaging to the study of auroral physics.

References

  1. Alexander MJ, Geller M, McLandress C, Polavarapu S, Preusse P, et al., Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Q. J. R. Meteorol. Soc. 136, 1103-1124 (2010). https://doi.org/10.1002/qj.637
  2. Alexander MJ, Holton JR, Durran DR, The gravity wave response above deep convection in a squall line simulation, J. Atmos. Sci. 52, 2212-2226 (1995). https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2
  3. Baker D, Pendleton W Jr, Steed A, Huppi R, Stair AT Jr, Near-infrared spectrum of an aurora, J. Geophys. Res. 82, 1601-1609 (1977). https://doi.org/10.1029/JA082i010p01601
  4. Baker DJ, Steed AJ, Ware GA, Offermann D, Lange G, et al., Ground-based atmospheric infrared and visible emission measurements, J. Atmos. Terr. Phys. 47, 133-145 (1985). https://doi.org/10.1016/0021-9169(85)90129-1
  5. Baumgardner JL, Flynn B, Mendillo MJ, Monochromatic imaging instrumentation for applications in aeronomy of the Earth and planets, Opt. Eng. 32, 3028-3032 (1993). https://doi.org/10.1117/12.149194
  6. Baumgardner J, Wroten J, Semeter J, Kozyra J, Buonsanto M, et al., A very bright SAR arc: implications for extreme magnetosphere-ionosphere coupling, Ann. Geophys. 25, 2593-2608 (2007). https://doi.org/10.5194/angeo-25-2593-2007
  7. Beedle JMH, Rura CE, Simpson DG, Cohen HI, Moraes Filho VP, et al., A user's guide to the magnetically connected space weather system: a brief review, Front. Astron. Space Sci. 8:786308 (2022). https://doi.org/10.3389/fspas.2021.786308
  8. Brooke JSA, Bernath PF, Western CM, Sneden C, Afsar M, et al., Line strengths of rovibrational and rotational transitions in the X2Π ground state of OH, J. Quant. Spectrosc. Radiat. Transf. 168, 142-157 (2016). https://doi.org/10.1016/j.jqsrt.2015.07.021
  9. Bosqued JM, Ion precipitation into the ionosphere during geomagnetic storms, Adv. Space Res. 5, 179-191 (1985). https://doi.org/10.1016/0273-1177(85)90136-X
  10. Chaston CC, Seki K, Sakanoi T, Asamura K, Hirahara M, Motion of aurorae, Geophys. Res. Lett. 37, L08104 (2010). https://doi.org/10.1029/2009GL042117
  11. Creutzberg F, Gattinger RL, Harris FR, Wozniak S, Vallance Jones A, Auroral studies with a chain of meridian scanning photometers, 2, mean distributions of proton and electron aurora as a function of magnetic activity, J. Geophys. Res. 93, 14591-14601 (1988). https://doi.org/10.1029/JA093iA12p14591
  12. Dalin P, Brandstrom U, Kero J, Voelger P, Nishiyama T, et al., A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia, Atmos. Meas. Tech. 17, 1561-1576 (2024). https://doi.org/10.5194/amt-17-1561-2024
  13. Deehr C, Lummerzheim D, Ground-based optical observations of hydrogen emission in the auroral substorm, J. Geophys. Res. 106, 33-44 (2001). https://doi.org/10.1029/2000JA002010
  14. Eather RH, Auroral proton precipitation and hydrogen emissions, Rev. Geophys. 5, 207-285 (1967). https://doi.org/10.1029/RG005i003p00207
  15. Eather RH, Advances in magnetospheric physics: aurora, Rev. Geophys. 13, 925-943 (1975). https://doi.org/10.1029/RG013i003p00925
  16. Eather RH, Results from Antarctic optical studies, Rev. Geophys. 26, 579-590 (1988). https://doi.org/10.1029/RG026i003p00579
  17. Egeland A, Burke WJ, Auroral hydrogen emissions: a historical survey, Hist. Geo Space Sci. 10, 201-213 (2019). https://doi.org/10.5194/hgss-10-201-2019
  18. Fang X, Liemohn MW, Kozyra JU, Solomon SC, Study of the proton arc spreading effect on primary ionization rates, J. Geophys. Res. 110, A07302 (2005). https://doi.org/10.1029/2004JA010915
  19. Frey HU, Localized aurora beyond the auroral oval, Rev. Geophys. 45, RG1003 (2007). https://doi.org/10.1029/2005RG000174
  20. Fritts DC, Joan Alexander M, Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys. 41, 1003 (2003). https://doi.org/10.1029/2001rg000106
  21. Galand M, Introduction to special section: proton precipitation into the atmosphere, J. Geophys. Res. 106, 1-6 (2001). https://doi.org/10.1029/2000JA002015
  22. Galand M, Lummerzheim D, Stephan AW, Bush BC, Chakrabarti S, Electron and proton aurora observed spectroscopically in the far ultraviolet, J. Geophys. Res. 107, 1-14 (2002). https://doi.org/10.1029/2001JA000235
  23. Galand M, Lummerzheim D, Contribution of proton precipitation to space-based auroral FUV observations, J. Geophys. Res. 109, A03307 (2004). https://doi.org/10.1029/2003JA010321
  24. Galand M, Baumgardner J, Pallamraju D, Chakrabarti S, Lovhaug UP, et al., Spectral imaging of proton aurora and twilight at Tromso, Norway, J. Geophys. Res. 109, A07305 (2004). https://doi.org/10.1029/2003JA010033
  25. Galand M, Chakrabarti S, Proton aurora observed from the ground, J. Atmos. Sol. Terr. Phys. 68, 1488-1501 (2006). https://doi.org/10.1016/j.jastp.2005.04.013
  26. Galand M, Fuller-Rowell TJ, Codrescu MV, Response of the upper atmosphere to auroral protons, J. Geophys. Res. 106, 127-139 (2001). https://doi.org/10.1029/2000JA002009
  27. Gallardo-Lacourt B, Frey HU, Martinis C, Proton aurora and optical emissions in the subauroral region, Space Sci. Rev. 217, 10 (2021). https://doi.org/10.1007/s11214-020-00776-6
  28. Gattinger RL, Vallance Jones A, Quantitative spectroscopy of the aurora. V. The spectrum of strong aurora between 10 000 and 16 000 A, Can. J. Phys. 59, 480-487 (1981). https://doi.org/10.1139/p81-059
  29. Gerrard AJ, Kane TJ, Meisel DD, Thayer JP, Kerr RB, Investigation of a resonance Lidar for measurement of thermospheric metastable helium, J. Atmos. Sol. Terr. Phys. 59, 2023-2035 (1997). https://doi.org/10.1016/S1364-6826(97)00046-1
  30. Hardy DA, Gussenhoven MS, Brautigam D, A statistical model of auroral ion precipitation, J. Geophys. Res. 94, 370-392 (1989). https://doi.org/10.1029/JA094iA01p00370
  31. Henriksen K, Stamnes K, Deehr CS, Sivjee GG, The HeI 3889A line in polar cleft spectra, in the Polar Cusp, eds. Holtet JA, Egeland A (D. Reidel Publishing Company, Dordrecht, 1985), 127-135.
  32. Hoffmann L, Alexander MJ, Occurrence frequency of convective gravity waves during the North American thunderstorm season, J. Geophys. Res. 115, D20111 (2010). https://doi.org/10.1029/2010jd014401
  33. Hunten DM, Rawson EG, Walker JK, Rapid measurement of N2+ rotational temperatures in aurora, Can. J. Phys. 41, 258-270 (1963). https://doi.org/10.1139/p63-032
  34. Immel TJ, Mende SB, Frey HU, Peticolas LM, Carlson CW, et al., Precipitation of auroral protons in detached arcs, Geophys. Res. Lett. 29, 1519 (2002). https://doi.org/10.1029/2001GL013847
  35. Ivchenko N, Blixt EM, Lanchester BS, Multispectral observations of auroral rays and curls, Geophys. Res. Lett. 32, L18106 (2005). https://doi.org/10.1029/2005GL022650
  36. Jokiaho O, Lanchester BS, Ivchenko N, Daniell GJ, Miller LCH, et al., Rotational temperature of N2+ (0,2) ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements, Ann. Geophys. 26, 853-866 (2008). https://doi.org/10.5194/angeo-26-853-2008
  37. Keiling A, The dynamics of the Alfvenic oval, J. Atmos. Sol. Terr. Phys. 219, 105616 (2021). https://doi.org/10.1016/j.jastp.2021.105616
  38. Lanchester B, Jokiaho OP, Galand M, Ivchenko N, Lummerzheim D, et al., Separating and quantifying ionospheric responses to proton and electron precipitation over Svalbard, J. Geophys. Res. 116, A09322 (2011). https://doi.org/10.1029/2011JA016474
  39. Liou K, Takahashi K, Observations of field line resonance with global auroral images, J. Atmos. Sol. Terr. Phys. 105-106, 152-159 (2013). https://doi.org/10.1016/j.jastp.2013.09.005
  40. Lorentzen DA, Moen J, Auroral proton and electron signatures in the dayside aurora, J. Geophys. Res. 105, 12733-12745 (2000). https://doi.org/10.1029/1999JA900405
  41. Martinis C, Baumgardner J, Wroten J, Mendillo M, All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites, Adv. Space Res. 61, 1636-1651 (2018). https://doi.org/10.1016/j.asr.2017.07.021
  42. Mella MR, Lynch KA, Hampton DL, Dahlgren H, Kintner PM, et al., Sounding rocket study of two sequential auroral poleward boundary intensifications, J. Geophys. Res. 116, A00K18 (2011). https://doi.org/10.1029/2011JA016428
  43. Mende SB, Frey HU, Morsony BJ, Immel TJ, Statistical behavior of proton and electron auroras during substorms, J. Geophys. Res. 108, 1339 (2003). https://doi.org/10.1029/2002JA009751
  44. Mende SB, Observing the magnetosphere through global auroral imaging: 1. observables, J. Geophys. Res. Space Phys. 121, 10623-10637 (2016a). https://doi.org/10.1002/2016JA022558
  45. Mende SB, Observing the magnetosphere through global auroral imaging: 2. observing techniques, J. Geophys. Res. Space Phys. 121, 10638-10660 (2016b). https://doi.org/10.1002/2016JA022607
  46. Meriwether JW, High latitude airglow observations of correlated short-term fluctuations in the hydroxyl Meinel 8-3 band intensity and rotational temperature, Planet. Space Sci. 23, 1211-1221 (1975). https://doi.org/10.1016/0032-0633(75)90170-1
  47. Mutiso CK , Zettergren MD, Hughes JM, Sivjee GG, Thermospheric neutral temperatures derived from charge-exchange produced N2+ Meinel (1,0) rotational distributions, Ann. Geophys. 31, 463-471 (2013). https://doi.org/10.5194/angeo-31-463-2013
  48. Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, et al., Temporal evolutions of N2+ Meinel (1,2) band near 1.5㎛ associated with aurora breakup and their effects on mesopause temperature estimations from OH Meinel (3,1) band, Earth Planets Space 73, 30 (2021). https://doi.org/10.1186/s40623-021-01360-0
  49. Pautet PD, Taylor MJ, Pendleton WR, Zhao Y, Yuan T, et al., Advanced mesospheric temperature mapper for high-latitude airglow studies, Appl. Opt. 53, 5934-5943 (2014). https://doi.org/10.1364/AO.53.005934
  50. Prange R, Energetic (keV) ions of ionospheric origin in the magnetosphere. A review. Ann. Geophys. 34, 187-213 (1978).
  51. Reasoner DL, Auroral helium precipitation, Rev. Geophys. 11, 169-180 (1973) https://doi.org/10.1029/RG011i001p00169
  52. Reber CA, Hays PB, Thermospheric wind effects on the distribution of helium and argon in the Earth's upper atmosphere, J. Geophys. Res. 78, 2977-2991 (1973). https://doi.org/10.1029/JA078i016p02977
  53. Reber CA, Dynamical effects in the distribution of helium in the thermosphere, J. Atmos. Terr. Phys. 38, 829-840 (1976). https://doi.org/10.1016/0021-9169(76)90023-4
  54. Rousselot P, Lidman C, Cuby JG, Moreels G, Monnet G, Night-sky spectral atlas of OH emission lines in the near-infrared, Astron. Astrophys. 354, 1134-1150 (2000).
  55. Saum KA, Benesch WM, Infrared electronic emission spectrum of nitrogen, Appl. Opt. 9, 195-200 (1970a). https://doi.org/10.1364/AO.9.000195
  56. Saum KA, Benesch WM, Infrared electronic emission spectrum of oxygen, Appl. Opt. 9, 1419-1423 (1970b). https://doi.org/10.1364/AO.9.001419
  57. Schmidt C, Hoppner K, Bittner M, A ground-based spectrometer equipped with an InGaAs array for routine observations of OH(3-1) rotational temperatures in the mesopause region, J. Atmos. Sol. Terr. Phys. 102, 125-139 (2013). https://doi.org/10.1016/j.jastp.2013.05.001
  58. Shefov NN, Semenov AI, Yurchenko OT, Empirical model of variations in the helium 1083 nm emission. 1. Intensity. Geomagn. Aeron. 49, 93-103 (2009). https://doi.org/10.1134/S0016793209010137
  59. Shefov NN, Semenov AI, Helium in the terrestrial upper atmosphere: spatial and temporal distribution of its emission in the infrared spectral region, in helium: characteristics, compounds, and applications (Nova Science Publishers, Hauppauge, 2011), 1-50.
  60. Sutton EK, Thayer JP, Wang W, Solomon SC, Liu X, et al., A self-consistent model of helium in the thermosphere, J. Geophys. Res. Space Phys. 120, 6884-6900 (2015). https://doi.org/10.1002/2015JA021223
  61. Taylor MJ, Gardner LC, Pendleton WR Jr, Long-period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at mid-latitudes, Adv. Space Res. 27, 1171-1179 (2001). https://doi.org/10.1016/S0273-1177(01)00153-3
  62. Thayer JP, Liu X, Lei J, Pilinski M, Burns AG, The impact of helium on thermosphere mass density response to geomagnetic activity during the recent solar minimum, J. Geophys. Res. 117, A07315 (2012). https://doi.org/10.1029/2012JA017832
  63. Trondsen T, Unick C, Wyatt D, Kim J, Kim J, et al., Compact SWIR imager for mapping temperature in the upper mesosphere/lower thermosphere, in AGU Fall Meeting 2021, New Orleans, LA, 13-17 Dec 2021.
  64. Vallance Jones A, Gattinger RL, Quantitative spectroscopy of the aurora. IV. the spectrum of medium intensity aurora between 8800 A and 11 400 A, Can. J. Phys. 54, 2128-2133 (1976). https://doi.org/10.1139/p76-251
  65. Wachter P, Schmidt C, Wust S, Bittner M, Spatial gravity wave characteristics obtained from multiple OH(3-1) airglow temperature time series, J. Atmos. Sol. Terr. Phys. 135, 192-201 (2015). https://doi.org/10.1016/j.jastp.2015.11.008
  66. Waldrop LS, Kerr RB, Gonzalez SA, Sulzer MP, Noto J, et al., Generation of metastable helium and the 1083 nm emission in the upper thermosphere, J. Geophys. Res. 110, A08304 (2005). https://doi.org/10.1029/2004JA010855
  67. Xu S, Vadas SL, Yue J, Thermospheric traveling atmospheric disturbances in austral winter from GOCE and CHAMP, J. Geophys. Res. Space Phys. 126, e2021JA029335 (2021). https://doi.org/10.1029/2021JA029335
  68. Zhang Y, Paxton LJ, Morrison D, Wolven B, Kil H, et al., Nightside detached auroras due to precipitating protons/ions during intense magnetic storms, J. Geophys. Res. 110, A02206 (2005). https://doi.org/10.1029/2004JA010498
  69. Zou Y, Nishimura Y, Lyons LR, Donovan EF, A statistical study of the relative locations of electron and proton auroral boundaries inferred from meridian scanning photometer observations, J. Geophys. Res. 117, A06206 (2012). https://doi.org/10.1029/2011JA017357