Acknowledgement
Trond S. Trondsen wishes to thank Stephen Mende for valuable discussions, going back to 2011, on the topic of determining the source of electron aurora precipitation by optical techniques. John Meriwether wishes to acknowledge the 2023 Defense University Research Instrumentation Program (DURIP) for funding support (FA9550-23-1-0412) of the acquisition of the Keo Sentry-SWIR imager to the Center for Solar-Terrestrial Research at the New Jersey Institute of Technology. We thank Charles Mutiso and Matthew Zettergren (Embry-Riddle Aeronautical University) for their helpful comments on the application of SWIR imaging to the study of auroral physics.
References
- Alexander MJ, Geller M, McLandress C, Polavarapu S, Preusse P, et al., Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Q. J. R. Meteorol. Soc. 136, 1103-1124 (2010). https://doi.org/10.1002/qj.637
- Alexander MJ, Holton JR, Durran DR, The gravity wave response above deep convection in a squall line simulation, J. Atmos. Sci. 52, 2212-2226 (1995). https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2
- Baker D, Pendleton W Jr, Steed A, Huppi R, Stair AT Jr, Near-infrared spectrum of an aurora, J. Geophys. Res. 82, 1601-1609 (1977). https://doi.org/10.1029/JA082i010p01601
- Baker DJ, Steed AJ, Ware GA, Offermann D, Lange G, et al., Ground-based atmospheric infrared and visible emission measurements, J. Atmos. Terr. Phys. 47, 133-145 (1985). https://doi.org/10.1016/0021-9169(85)90129-1
- Baumgardner JL, Flynn B, Mendillo MJ, Monochromatic imaging instrumentation for applications in aeronomy of the Earth and planets, Opt. Eng. 32, 3028-3032 (1993). https://doi.org/10.1117/12.149194
- Baumgardner J, Wroten J, Semeter J, Kozyra J, Buonsanto M, et al., A very bright SAR arc: implications for extreme magnetosphere-ionosphere coupling, Ann. Geophys. 25, 2593-2608 (2007). https://doi.org/10.5194/angeo-25-2593-2007
- Beedle JMH, Rura CE, Simpson DG, Cohen HI, Moraes Filho VP, et al., A user's guide to the magnetically connected space weather system: a brief review, Front. Astron. Space Sci. 8:786308 (2022). https://doi.org/10.3389/fspas.2021.786308
- Brooke JSA, Bernath PF, Western CM, Sneden C, Afsar M, et al., Line strengths of rovibrational and rotational transitions in the X2Π ground state of OH, J. Quant. Spectrosc. Radiat. Transf. 168, 142-157 (2016). https://doi.org/10.1016/j.jqsrt.2015.07.021
- Bosqued JM, Ion precipitation into the ionosphere during geomagnetic storms, Adv. Space Res. 5, 179-191 (1985). https://doi.org/10.1016/0273-1177(85)90136-X
- Chaston CC, Seki K, Sakanoi T, Asamura K, Hirahara M, Motion of aurorae, Geophys. Res. Lett. 37, L08104 (2010). https://doi.org/10.1029/2009GL042117
- Creutzberg F, Gattinger RL, Harris FR, Wozniak S, Vallance Jones A, Auroral studies with a chain of meridian scanning photometers, 2, mean distributions of proton and electron aurora as a function of magnetic activity, J. Geophys. Res. 93, 14591-14601 (1988). https://doi.org/10.1029/JA093iA12p14591
- Dalin P, Brandstrom U, Kero J, Voelger P, Nishiyama T, et al., A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia, Atmos. Meas. Tech. 17, 1561-1576 (2024). https://doi.org/10.5194/amt-17-1561-2024
- Deehr C, Lummerzheim D, Ground-based optical observations of hydrogen emission in the auroral substorm, J. Geophys. Res. 106, 33-44 (2001). https://doi.org/10.1029/2000JA002010
- Eather RH, Auroral proton precipitation and hydrogen emissions, Rev. Geophys. 5, 207-285 (1967). https://doi.org/10.1029/RG005i003p00207
- Eather RH, Advances in magnetospheric physics: aurora, Rev. Geophys. 13, 925-943 (1975). https://doi.org/10.1029/RG013i003p00925
- Eather RH, Results from Antarctic optical studies, Rev. Geophys. 26, 579-590 (1988). https://doi.org/10.1029/RG026i003p00579
- Egeland A, Burke WJ, Auroral hydrogen emissions: a historical survey, Hist. Geo Space Sci. 10, 201-213 (2019). https://doi.org/10.5194/hgss-10-201-2019
- Fang X, Liemohn MW, Kozyra JU, Solomon SC, Study of the proton arc spreading effect on primary ionization rates, J. Geophys. Res. 110, A07302 (2005). https://doi.org/10.1029/2004JA010915
- Frey HU, Localized aurora beyond the auroral oval, Rev. Geophys. 45, RG1003 (2007). https://doi.org/10.1029/2005RG000174
- Fritts DC, Joan Alexander M, Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys. 41, 1003 (2003). https://doi.org/10.1029/2001rg000106
- Galand M, Introduction to special section: proton precipitation into the atmosphere, J. Geophys. Res. 106, 1-6 (2001). https://doi.org/10.1029/2000JA002015
- Galand M, Lummerzheim D, Stephan AW, Bush BC, Chakrabarti S, Electron and proton aurora observed spectroscopically in the far ultraviolet, J. Geophys. Res. 107, 1-14 (2002). https://doi.org/10.1029/2001JA000235
- Galand M, Lummerzheim D, Contribution of proton precipitation to space-based auroral FUV observations, J. Geophys. Res. 109, A03307 (2004). https://doi.org/10.1029/2003JA010321
- Galand M, Baumgardner J, Pallamraju D, Chakrabarti S, Lovhaug UP, et al., Spectral imaging of proton aurora and twilight at Tromso, Norway, J. Geophys. Res. 109, A07305 (2004). https://doi.org/10.1029/2003JA010033
- Galand M, Chakrabarti S, Proton aurora observed from the ground, J. Atmos. Sol. Terr. Phys. 68, 1488-1501 (2006). https://doi.org/10.1016/j.jastp.2005.04.013
- Galand M, Fuller-Rowell TJ, Codrescu MV, Response of the upper atmosphere to auroral protons, J. Geophys. Res. 106, 127-139 (2001). https://doi.org/10.1029/2000JA002009
- Gallardo-Lacourt B, Frey HU, Martinis C, Proton aurora and optical emissions in the subauroral region, Space Sci. Rev. 217, 10 (2021). https://doi.org/10.1007/s11214-020-00776-6
- Gattinger RL, Vallance Jones A, Quantitative spectroscopy of the aurora. V. The spectrum of strong aurora between 10 000 and 16 000 A, Can. J. Phys. 59, 480-487 (1981). https://doi.org/10.1139/p81-059
- Gerrard AJ, Kane TJ, Meisel DD, Thayer JP, Kerr RB, Investigation of a resonance Lidar for measurement of thermospheric metastable helium, J. Atmos. Sol. Terr. Phys. 59, 2023-2035 (1997). https://doi.org/10.1016/S1364-6826(97)00046-1
- Hardy DA, Gussenhoven MS, Brautigam D, A statistical model of auroral ion precipitation, J. Geophys. Res. 94, 370-392 (1989). https://doi.org/10.1029/JA094iA01p00370
- Henriksen K, Stamnes K, Deehr CS, Sivjee GG, The HeI 3889A line in polar cleft spectra, in the Polar Cusp, eds. Holtet JA, Egeland A (D. Reidel Publishing Company, Dordrecht, 1985), 127-135.
- Hoffmann L, Alexander MJ, Occurrence frequency of convective gravity waves during the North American thunderstorm season, J. Geophys. Res. 115, D20111 (2010). https://doi.org/10.1029/2010jd014401
- Hunten DM, Rawson EG, Walker JK, Rapid measurement of N2+ rotational temperatures in aurora, Can. J. Phys. 41, 258-270 (1963). https://doi.org/10.1139/p63-032
- Immel TJ, Mende SB, Frey HU, Peticolas LM, Carlson CW, et al., Precipitation of auroral protons in detached arcs, Geophys. Res. Lett. 29, 1519 (2002). https://doi.org/10.1029/2001GL013847
- Ivchenko N, Blixt EM, Lanchester BS, Multispectral observations of auroral rays and curls, Geophys. Res. Lett. 32, L18106 (2005). https://doi.org/10.1029/2005GL022650
- Jokiaho O, Lanchester BS, Ivchenko N, Daniell GJ, Miller LCH, et al., Rotational temperature of N2+ (0,2) ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements, Ann. Geophys. 26, 853-866 (2008). https://doi.org/10.5194/angeo-26-853-2008
- Keiling A, The dynamics of the Alfvenic oval, J. Atmos. Sol. Terr. Phys. 219, 105616 (2021). https://doi.org/10.1016/j.jastp.2021.105616
- Lanchester B, Jokiaho OP, Galand M, Ivchenko N, Lummerzheim D, et al., Separating and quantifying ionospheric responses to proton and electron precipitation over Svalbard, J. Geophys. Res. 116, A09322 (2011). https://doi.org/10.1029/2011JA016474
- Liou K, Takahashi K, Observations of field line resonance with global auroral images, J. Atmos. Sol. Terr. Phys. 105-106, 152-159 (2013). https://doi.org/10.1016/j.jastp.2013.09.005
- Lorentzen DA, Moen J, Auroral proton and electron signatures in the dayside aurora, J. Geophys. Res. 105, 12733-12745 (2000). https://doi.org/10.1029/1999JA900405
- Martinis C, Baumgardner J, Wroten J, Mendillo M, All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites, Adv. Space Res. 61, 1636-1651 (2018). https://doi.org/10.1016/j.asr.2017.07.021
- Mella MR, Lynch KA, Hampton DL, Dahlgren H, Kintner PM, et al., Sounding rocket study of two sequential auroral poleward boundary intensifications, J. Geophys. Res. 116, A00K18 (2011). https://doi.org/10.1029/2011JA016428
- Mende SB, Frey HU, Morsony BJ, Immel TJ, Statistical behavior of proton and electron auroras during substorms, J. Geophys. Res. 108, 1339 (2003). https://doi.org/10.1029/2002JA009751
- Mende SB, Observing the magnetosphere through global auroral imaging: 1. observables, J. Geophys. Res. Space Phys. 121, 10623-10637 (2016a). https://doi.org/10.1002/2016JA022558
- Mende SB, Observing the magnetosphere through global auroral imaging: 2. observing techniques, J. Geophys. Res. Space Phys. 121, 10638-10660 (2016b). https://doi.org/10.1002/2016JA022607
- Meriwether JW, High latitude airglow observations of correlated short-term fluctuations in the hydroxyl Meinel 8-3 band intensity and rotational temperature, Planet. Space Sci. 23, 1211-1221 (1975). https://doi.org/10.1016/0032-0633(75)90170-1
- Mutiso CK , Zettergren MD, Hughes JM, Sivjee GG, Thermospheric neutral temperatures derived from charge-exchange produced N2+ Meinel (1,0) rotational distributions, Ann. Geophys. 31, 463-471 (2013). https://doi.org/10.5194/angeo-31-463-2013
- Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, et al., Temporal evolutions of N2+ Meinel (1,2) band near 1.5㎛ associated with aurora breakup and their effects on mesopause temperature estimations from OH Meinel (3,1) band, Earth Planets Space 73, 30 (2021). https://doi.org/10.1186/s40623-021-01360-0
- Pautet PD, Taylor MJ, Pendleton WR, Zhao Y, Yuan T, et al., Advanced mesospheric temperature mapper for high-latitude airglow studies, Appl. Opt. 53, 5934-5943 (2014). https://doi.org/10.1364/AO.53.005934
- Prange R, Energetic (keV) ions of ionospheric origin in the magnetosphere. A review. Ann. Geophys. 34, 187-213 (1978).
- Reasoner DL, Auroral helium precipitation, Rev. Geophys. 11, 169-180 (1973) https://doi.org/10.1029/RG011i001p00169
- Reber CA, Hays PB, Thermospheric wind effects on the distribution of helium and argon in the Earth's upper atmosphere, J. Geophys. Res. 78, 2977-2991 (1973). https://doi.org/10.1029/JA078i016p02977
- Reber CA, Dynamical effects in the distribution of helium in the thermosphere, J. Atmos. Terr. Phys. 38, 829-840 (1976). https://doi.org/10.1016/0021-9169(76)90023-4
- Rousselot P, Lidman C, Cuby JG, Moreels G, Monnet G, Night-sky spectral atlas of OH emission lines in the near-infrared, Astron. Astrophys. 354, 1134-1150 (2000).
- Saum KA, Benesch WM, Infrared electronic emission spectrum of nitrogen, Appl. Opt. 9, 195-200 (1970a). https://doi.org/10.1364/AO.9.000195
- Saum KA, Benesch WM, Infrared electronic emission spectrum of oxygen, Appl. Opt. 9, 1419-1423 (1970b). https://doi.org/10.1364/AO.9.001419
- Schmidt C, Hoppner K, Bittner M, A ground-based spectrometer equipped with an InGaAs array for routine observations of OH(3-1) rotational temperatures in the mesopause region, J. Atmos. Sol. Terr. Phys. 102, 125-139 (2013). https://doi.org/10.1016/j.jastp.2013.05.001
- Shefov NN, Semenov AI, Yurchenko OT, Empirical model of variations in the helium 1083 nm emission. 1. Intensity. Geomagn. Aeron. 49, 93-103 (2009). https://doi.org/10.1134/S0016793209010137
- Shefov NN, Semenov AI, Helium in the terrestrial upper atmosphere: spatial and temporal distribution of its emission in the infrared spectral region, in helium: characteristics, compounds, and applications (Nova Science Publishers, Hauppauge, 2011), 1-50.
- Sutton EK, Thayer JP, Wang W, Solomon SC, Liu X, et al., A self-consistent model of helium in the thermosphere, J. Geophys. Res. Space Phys. 120, 6884-6900 (2015). https://doi.org/10.1002/2015JA021223
- Taylor MJ, Gardner LC, Pendleton WR Jr, Long-period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at mid-latitudes, Adv. Space Res. 27, 1171-1179 (2001). https://doi.org/10.1016/S0273-1177(01)00153-3
- Thayer JP, Liu X, Lei J, Pilinski M, Burns AG, The impact of helium on thermosphere mass density response to geomagnetic activity during the recent solar minimum, J. Geophys. Res. 117, A07315 (2012). https://doi.org/10.1029/2012JA017832
- Trondsen T, Unick C, Wyatt D, Kim J, Kim J, et al., Compact SWIR imager for mapping temperature in the upper mesosphere/lower thermosphere, in AGU Fall Meeting 2021, New Orleans, LA, 13-17 Dec 2021.
- Vallance Jones A, Gattinger RL, Quantitative spectroscopy of the aurora. IV. the spectrum of medium intensity aurora between 8800 A and 11 400 A, Can. J. Phys. 54, 2128-2133 (1976). https://doi.org/10.1139/p76-251
- Wachter P, Schmidt C, Wust S, Bittner M, Spatial gravity wave characteristics obtained from multiple OH(3-1) airglow temperature time series, J. Atmos. Sol. Terr. Phys. 135, 192-201 (2015). https://doi.org/10.1016/j.jastp.2015.11.008
- Waldrop LS, Kerr RB, Gonzalez SA, Sulzer MP, Noto J, et al., Generation of metastable helium and the 1083 nm emission in the upper thermosphere, J. Geophys. Res. 110, A08304 (2005). https://doi.org/10.1029/2004JA010855
- Xu S, Vadas SL, Yue J, Thermospheric traveling atmospheric disturbances in austral winter from GOCE and CHAMP, J. Geophys. Res. Space Phys. 126, e2021JA029335 (2021). https://doi.org/10.1029/2021JA029335
- Zhang Y, Paxton LJ, Morrison D, Wolven B, Kil H, et al., Nightside detached auroras due to precipitating protons/ions during intense magnetic storms, J. Geophys. Res. 110, A02206 (2005). https://doi.org/10.1029/2004JA010498
- Zou Y, Nishimura Y, Lyons LR, Donovan EF, A statistical study of the relative locations of electron and proton auroral boundaries inferred from meridian scanning photometer observations, J. Geophys. Res. 117, A06206 (2012). https://doi.org/10.1029/2011JA017357