Acknowledgement
The authors would like to express their profound gratitude to the reviewers and the editorial team for their constructive criticism and highly productive discussions, which significantly contributed to the improvement of the manuscript.
References
- Abd El-Bar SE, Abd El-Salam FA, Modelling of charged satellite motion in Earth's gravitational and magnetic fields, Astrophys. Space Sci. 363, 89 (2018). https://doi.org/10.1007/s10509-018-3310-5
- Abd El-Salam FA, Abd El-Bar SE, Families of frozen orbits of lunar artificial satellites, Appl. Math. Model. 40, 9739-9753 (2016). https://doi.org/10.1016/j.apm.2016.06.036
- Abd El-Salam FA, Abd El-Bar SE, Rassem M, Fully analytical solution of the electromagnetic perturbations on the motion of the charged satellites in Earth's magnetic field, Eur. Phys. J. Plus. 132, 198 (2017). https://doi.org/10.1140/epjp/i2017-11500-3
- Abd El-Salam FA, Alamri SZ, Abd El-Bar SE, Seadawy AR, Frozen apsidal line orbits around tiaxial Moon with coupling quadrupole nonlinearity, Results Phys. 10, 176-186 (2018). https://doi.org/10.1016/j.rinp.2018.05.029
- Abdel-Aziz YA, Khalil KI, Electromagnetic effects on the orbital motion of a charged spacecraft, Res. Astron. Astrophys. 14, 589-600 (2014). https://doi.org/10.1088/1674-4527/14/5/008
- Abdel-Aziz YA, Lorentz force effects on the orbit of a charged artificial satellite: a new approach, AIP Conf. Proc. 888, 385-391 (2007). https://doi.org/10.1063/1.2711134
- Ahmed MKM, On the normalization of the perturbed Keplerian systems, Astron. J. 107, 1900-1903 (1994). https://doi.org/10.1086/117001
- Atchison JA, Peck MA, Lorentz-augmented Jovian orbit insertion, J. Guid. Control Dyn. 32, 418-423 (2009). https://doi.org/10.2514/1.38406
- Carvalho JPS, Vilhena de Moraes R, Prado AFBA, Some orbital characteristics of lunar artificial satellites, Celest. Mech. Dyn. Astron. 108, 371-388 (2010). https://doi.org/10.1007/s10569-010-9310-6
- Circi C, D'Ambrosio A, Lei H, Ortore E, Global mapping of asteroids by frozen orbits: the case of 216 kleopatra, Acta Astronaut. 161, 101-107 (2019). https://doi.org/10.1016/j.actaastro.2019.05.026
- Delhaise F, Morbidelli A, Luni-solar effects of geosynchronous orbits at the critical inclination, Celest. Mech. Dyn. Astron. 57, 155-173 (1993). https://doi.org/10.1007/BF00692471
- Delsate N, Robutel P, Lemaitre A, Carletti T, Frozen orbits at high eccentricity and inclination: application to Mercury orbiter, Celest. Mech. Dyn. Astron. 108, 275-300 (2010). https://doi.org/10.1007/s10569-010-9306-2
- Haberman R, Rand R, Yuster T, Resonant capture and separatrix crossing in dual-spin spacecraft, Nonlinear Dyn. 18, 159-184 (1999). https://doi.org/10.1023/A:1008393913849
- Kamel AA, Perturbation method in the theory of nonlinear oscillations, Celest. Mech. 3, 90-106 (1970). https://doi.org/10.1007/BF01230435
- Khattab EH, Radwan M, Rahoma WA, Frozen orbits construction for a lunar solar sail, J. Astron. Space Sci. 37, 1-9 (2020). https://doi.org/10.5140/JASS.2020.37.1.1
- Lanchares V, Pascual AI, San Juan JF, Frozen orbits around a prolate body, Monogr. Real Acad. Ci. Zaragoza. 35, 73-81 (2011).
- Lara M, Palacian JF, Russell RP, Mission design through averaging of perturbed Keplerian systems: the paradigm of an Enceladus orbiter, Celest. Mech. Dyn. Astron. 108, 1-22 (2010a). https://doi.org/10.1007/s10569-010-9286-2
- Lara M, Palacian JF, Yanguas P, Corral C, Analytical theory for spacecraft motion about mercury, Acta Astronaut. 66, 1022-1038 (2010b). https://doi.org/10.1016/j.actaastro.2009.10.011
- Li LS, Influence of the electric induction drag on the orbit of a charged satellite moving in the ionosphere (solution by the method of the average value), Astrophys. Space Sci. 361, 1-8 (2016). https://doi.org/10.1007/s10509-015-2583-1
- Li X, Qiao D, Li P, Frozen orbit design and maintenance with an application to small body exploration, Aerosp. Sci. Technol. 92, 170-180 (2019). https://doi.org/10.1016/j.ast.2019.05.062
- Liu X, Baoyin H, Ma X, Analytical investigations of quasi-circular frozen orbits in the Martian gravity field, Celest. Mech. Dyn. Astron. 109, 303-320 (2011). https://doi.org/10.1007/s10569-010-9330-2
- Liu X, Baoyin H, Ma X, Five special types of orbits around Mars, J. Guid. Control Dyn. 33, 1294-1301 (2010). https://doi.org/10.2514/1.48706
- Masoud A, Rahoma WA, Khattab EH, El-Salam FA, Construction of frozen orbits using continuous thrust control theories considering Earth oblateness and solar radiation pressure perturbations, J. Astronaut. Sci. 65, 448-469 (2018). https://doi.org/10.1007/s40295-018-0135-y
- Nie T, Gurfil P, Lunar frozen orbits revisited, Celest. Mech. Dyn. Astron. 130, 61 (2018). https://doi.org/10.1007/s10569-018-9858-0
- Oliveira AC, Domingos RC, Silva LM, Prado AFBA, Sanchez DM, Perturbation of the Sun on frozen orbits around mars, J. Phys. Conf. Ser. 1365, 1-8 (2019). https://doi.org/10.1088/1742-6596/1365/1/012028
- Parke ME, Stewart RH, Farless DL, Cartwright DE, On the choice of orbits for an altimetric satellite to study ocean circulation and tides, J. Geophys. Res. 92, 11693-11707 (1987). https://doi.org/10.1029/JC092iC11p11693
- Peck MA, Prospects and challenges for Lorentz-augmented orbits, in AIAA Guidance, Navigation, and Control Conference (AIAA 5995), San Francisco, CA, 15-18 Aug 2005.
- Quinn D, Rand R, Bridge J, The dynamics of resonant capture, Nonlinear Dynamics 8, 1-20 (1995). https://doi.org/10.1007/BF00045004
- Rahoma WA, Abd El-Salam FA, The effects of Moon's uneven mass distribution on the critical inclinations of a lunar orbiter, J. Astron. Space Sci. 31, 285-294 (2014). https://doi.org/10.5140/JASS.2014.31.4.285
- Rahoma WA, Investigating exoplanet orbital evolution around binary star systems with mass loss, J. Astron. Space Sci. 33, 257-264 (2016). https://doi.org/10.5140/JASS.2016.33.4.257
- Rahoma WA, Khattab EH, Abd El-Salam FA, Relativistic and the first sectorial harmonics corrections in the critical inclination, Astrophys. Space Sci. 351, 113-117 (2014). https://doi.org/10.1007/s10509-014-1811-4
- Rahoma WA, Orbital elements evolution due to a perturbing body in an inclined elliptical orbit, J. Astron. Space Sci. 31, 199-204 (2014). https://doi.org/10.5140/JASS.2014.31.3.199
- Sehnal L, The Motion of a Charged Satellite in the Earth's Magnetic Field, SAO Special Report, No. #271, 1969.
- Singh SK, Robyn W, Taheri E, Junkins J, Feasibility of quasi-frozen, near-polar and extremely low-altitude lunar orbits, Acta Astronaut. 166, 450-468 (2020). https://doi.org/10.1016/j.actaastro.2019.10.037
- Streetman B, Peck M, Gravity-assist maneuvers augmented by the Lorentz force, J. Guid. Control Dyn. 32, 1639-1647 (2009). https://doi.org/10.2514/6.2007-6846
- Streetman B, Peck MA, Gravity-assist maneuvers augmented by the Lorentz force, in AIAA Guidance, Navigation, and Control Conference, Hilton Head, SC, 20 Aug 2007a.
- Streetman B, Peck MA, New synchronous orbits using the geomagnetic Lorentz force, J. Guid. Control Dyn. 30, 1677-1690 (2007b). https://doi.org/10.2514/1.29080
- Tealib SK, Abdel-Aziz Y, Awad ME, Khalil KI, Radwan M, Semi-analytical solution for formation flying spacecraft subject to electromagnetic acceleration, Univ. J. Mech. Eng. 8, 41-50 (2020). https://doi.org/10.13189/ujme.2020.080106
- Tzirti S, Tsiganis K, Varvoglis H, Effect of 3rd-degree gravity harmonics and Earth perturbations on lunar artificial satellite orbits, Celest. Mech. Dyn. Astron. 108, 389-404 (2010). https://doi.org/10.1007/s10569-010-9313-3
- Tzirti S, Tsiganis K, Varvoglis H, Quasi-critical orbits for artificial lunar satellites, Celest. Mech. Dyn. Astron. 104, 227-239 (2009). https://doi.org/10.1007/s10569-009-9207-4
- Zotos EE, Classifying orbits in the restricted three-body problem, Nonlinear Dyn. 8, 1233-1250 (2015). https://doi.org/10.1007/s11071-015-2229-4