DOI QR코드

DOI QR Code

지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking

  • 박영신 (조선대학교 사범대학 지구과학교육과) ;
  • 박기락 (신가중학교)
  • Young Shin Park (Department of Earth Science Education, Chosun University) ;
  • Ki Rak Park (Singa Middle School)
  • 투고 : 2024.06.10
  • 심사 : 2024.06.30
  • 발행 : 2024.06.30

초록

이 연구의 목적은 공학기반 파력발전소 주제의 STEAM 수업을 통해서 지구과학전공 예비교사들의 컴퓨팅 사고에 대한 인식형성 및 개선이 있는지를 탐색하는 것이다. STEAM 수업은 가장 효율적인 파력발전소 모형을 제작해보는 내용으로 구성되었다. 컴퓨팅 사고 실천 인식을 알아보는 설문지는 연구자가 기존의 연구를 중심으로 설문 문항을 개발하여 15명의 예비교사들에게 투입하였다. STEAM 수업은 파도를 이용해서 터빈이 돌아가는 과학적 원리 이해를 바탕으로 모둠별로 효율적인 파력발전소 모형을 개발하도록 하였으며 수업 중에 문제를 인식하고(문제해결), 코딩작업을 해서(코딩 및 프로그래밍) 3D 프린터로 파력발전소를 제작하였으며(모델 설계 및 구축), 제작된 산출물을 평가하여 오류를 수정하는(문제 오류 수정) 동안에 '논리적 사고'를 통한 높은 수준의 컴퓨팅 사고 실천 인식이 파악되었다(14개 중에 앞의 5개 실천은 평균 5점). 하지만 용어에 대한 정확한 정의를 알지 못하고 실시한 수업에서 '추상화'. '문제분해', 및 '빅 데이터 활용'에 대한 인식은 오히려 수업 후의 인식은 더 낮아졌다(3개의 실천). STEAM 수업 후에는 컴퓨팅 사고 실천은 '온라인 게임하기'는 아니라는 것에 인식개선이 있었지만(4.06→0.86; 역문항) 아직도 컴퓨터를 이용해서 해야 하는 컴퓨팅 사고 실천으로 인식하고 있어 개선되지 않음이 확인되었다(컴퓨터처럼 생각하기, 컴퓨터를 사용하여 통계하기). 문제 인식에 해당하는 '문제해결'(3.73→4.33), '패턴 인식'(3.53→3.66), 그리고 '최상의 도구 선택'(4.26→4.66)의 3개 실천은 인식이 약하게 개선되었다. 컴퓨팅 사고 실천과 같은 역량 함양을 위해서는 실습위주의 교육양성과정이 개설되어야 하며, 특히 본 연구에서는 다른 주제의 추가적인 STEAM 수업을 했다면 개선이 일어나지 않거나 약하게 인식되었던 컴퓨팅 사고 실천에 대해서는 확실한 개선이 있을 수 있다는 결론을 내릴 수 있다. 다회적인 상황학습의 교육실습 교육과정이 개설되어야 한다.

The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1045468).

참고문헌

  1. Al-Salamat, MKM., 2022, Scientific and engineering practices aligned with the NGSS in the performance of secondary stage physics teachers. PLoS ONE 17(10), 1-18 p.
  2. Bower, M., Wood, L., Lai, J., Howe, C., Lister, R., Mason, R., 2017, Improving the computational thinking pedagogical capabilities of school teachers. Australian Journal of Teacher Education, 42(3), 53-73 p.
  3. Computer Science Teacher Association, 2011. Computational Thinking Leadership Toolkit.
  4. Green, J., & Park, Y-S., 2021, Self-Study journey from a novice to an expert for computational thinking practices. Journal of Korean Earth Science Society, 42(5), 588-6-3 p.
  5. Hong, G., & Cho, J., 2015, The effects of convergence talent education (STEAM) on the scientific attitudes and creative problem solving ability of higher elementary school students, A Study on Korean Education Problems, 33(1), 77-99 p.
  6. Hwang, G., & Park, Y-S., 2021, Exploring teachers' perceptions of computational thinking embedded in professional development program. Journal of Korean Earth Science Society, 42(3), 344-364 p.
  7. Hwang, Y., Moon, K., & Choi, Y., 2020, Analysis of students' computational thinking competencies and their changes through computational thinking-based socioscientific issues (CT-SSI) educational programs. Journal of Education and Culture, 26 (2), 175-196 p.
  8. ISTE & CSTA, 2011, Computational Thinking Leadership Toolkit. Computer Science Teachers Association (CSTA) and the International Society for Technology in Education (ISTE) supported by the National Science Foundation. ISTE.
  9. Kim, D., Ko, D., Han, M., & H., S., 2014, The effects of science lessons Applying STEAM education program on the creativity and interest levels of elementary students. Journal of the Korean Association for Science Education, 34(1), 43-54 p.
  10. Kim, J., Woo, H., & Lee, W., 2020, SW education plan of secondary school teacher training institutions to strengthen SW convergence education. The Korean Association of Computer Education, 22(6), 1-13 p.
  11. Kim, H., Lim, S., Cho, H., & Hong, O., 2013, Analysis of changes in interest in science and self-directed learning ability following the implementation of convergence talent education (STEAM), Korean Association for Learner-Centered curriculum and Instruction, 13(3). 269-289 p.
  12. KOFAC, 2013, 2013 Annual Conference on Science and Creativity-Computational Thinking International Seminar. Seoul.
  13. Lilly, S., McAlister, A. M., Fick S. J., Chiu, J. L., & McElhney, K. M., 2022, Elementary teachers' verbal supports of science and engineering practices in an NGSS-aligned science, engineering, and computational thinking, Journal of Research in Science Teaching, 59(6), 1035-1064 p.
  14. Lim, C., & Oh, B., 2015, Elementary pre-service teachers and in-service teachers' perceptions and demands on STEAM education, Journal of Korean Society of Earth Science Education, 8(1), 1-11 p.
  15. Ministry of Education, 2015, The 2015 revised Science curriculum.
  16. Ministry of Education, 2022, The 2022 revised Science curriculum.
  17. National Research Council, 2009, A New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution, Washington,DC: National Academies Press.
  18. National Research Council, 2012, A framework for K-12 Science Education, Washington. D.C: The National Academy Press
  19. NGSS Lead States, 2013, Next Generation Science Standards: For states, by states. Washington. D.C: The National Academy Press
  20. PISA's new focus on computational thinking and coding. PISA has a new test; countries can prepare by prioritizing computer science [Website]. (2023, June 20) https://codeorg.medium.com/pisas-new-focus-on-computational-thinking-and-coding-fbe90e456c5f
  21. Park, Y., Hur, E., & Hwang, E., 2018, A study of innovation tasks of teacher training curriculum according to educational environment. The Journal of Korean Teacher Education, 35(1), 165-188 p.
  22. Park, Y-S., & Green, J., 2020, The analysis of computational thinking practices in STEAM program and its implication for creative problem solvers in the 21st century. Journal of Korean Earth Science Society, 41 (4), 415-434 p.
  23. Park, Y-S. and Park, M., 2018, Exploring students' competencies to be creative problem solvers with computational thinking practices. Journal of the Korean Earth Science Society, 39(4), 388-400 p.
  24. Park, Y-S., & Hwang, K., 2017, The preliminary study of developing computational thinking practice analysis tool and its implementation. Journal of Korean Society of Earth Science Education, 10(2), 140-160 p.
  25. Rich, K., Yadav, A., & Schwarz, C., 2019, Computational thinking, mathematics, and science: Elementary teachers' perspectives on integration. Journal of Technology and Teacher Education. 27(2), 165-205 p.
  26. Sands, P., Yadav, A., & Good, J., 2018, Computational thinking in K-12: In-service teacher perceptions of computational thinking. (M. S. Khine (ed.), Computational Thinking in the STEM Disciplines), 151-164 p.
  27. Selby, C. C., & Woollard, J., 2014. Computational thinking: The developing definition. Annual conference of SIGCSE 2014, 5-8 March, Atlanta GA
  28. Shin, M., & Kim, S., 2022, Alternatives to improving the curriculum of teacher training institutions to enhance future responsiveness. Journal of Digital Convergence, 20(2), 447-454 p.
  29. Shin, Y., 2022, 2022 Revised Science Curriculum Proposal (Final Draft) Development Policy Study. KOFAC Report 11-B552111-000030-01.
  30. Rich, K. M., Yadav, A., & Schwarz, C. V., 2019. Computational thinking, mathematics, and science: Elementary teachers' perspectives on integration. Journal of Technology and Teacher Education, 27(2):165-205 p.
  31. Wang, J., 2022, Public attitudes toward science and technology and the role of government: Comparison of OECD countries. The Journal of Korean Policy Studies, 22(1), 1-31 p.
  32. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., and Wilensky, U., 2016, Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147 p.
  33. Wing, J. M., 2006, Computational thinking. Communications of the ACM, 49(3), 33-36 p.
  34. Wing, J. M., 2008, Computational Thinking and Thinking About Computing. Philosophical Transactions of the Royal Society, 366, 3717-3725 p.