DOI QR코드

DOI QR Code

충남 서부지역의 선형구조와 단층지형

Lineament and Fault-related Landforms of the Western Chungcheongnamdo

  • 김태석 (고려대학교 지리교육과) ;
  • 이초희 (고려대학교 대학원 지리학과) ;
  • 성영배 (고려대학교 지리교육과)
  • Tae-Suk Kim (Department of Geography Education, Korea University) ;
  • Cho-Hee Lee (Department of Geography, Korea University) ;
  • Yeong Bae Seong (Department of Geography Education, Korea University)
  • 투고 : 2024.05.13
  • 심사 : 2024.06.13
  • 발행 : 2024.06.30

초록

역사지진 및 계기지진이 보고되어 앞으로 지진이 발생할 가능성이 있는 한반도 중부지역 중, 충청남도 서부지역에 분포하는 선형구조와 단층지형을 분석하였다. 단층지형을 기반으로 총 151개의 선형구조가 추출하였다. 당진단층과 예산단층이 위치하는 지역에 단층과 주향이 일치하는 선형구조가 밀집하여 분포하는 반면, 홍성단층이 위치한 지역에는 선형구조의 수가 적으며 단층과 유사한 주향을 갖는 선형구조 또한 잘 인지되지 않는다. 이러한 특징은 넓은 충적층과, 오랜 기간의 풍화와 침식, 그리고 경작으로 인한 지표의 변형 등에 의해 단층을 지시하는 지형증거를 인지하기 어렵기 때문으로 판단된다. 단층으로 판명된 5개의 주요지점에서는 단층안부, 제4기 충적층에 나타나는 경사급변점, 선형곡 등의 단층지형이 선형구조를 따라 인지되었으며 단층지형이 실제 단층을 잘 지시하는 것으로 나타났다. 한편 선형구조 내에서 감지된 제4기층의 변위는 단층운동에 의해 직접적으로 형성된 것이 아닌 농경지 정리와 같은 인위적 교란이나 하천 침식의 영향과 같은 외부요인에 의해 형성되었을 가능성이 있는 것으로 파악되었다. 연구지역에서 인지되는 단층지형의 유형과 한반도 남동부 지역에서 인지되는 단층지형의 유형에 차이가 나타나는데 이는 단층지형의 유형이 단층종류에 따라 변화되는 한 예를 보여준다.

This study analyzed lineaments and fault-related landforms in Chungcheongnam-do, central Korean Peninsula, based on historical and instrumental records, given its susceptibility to future earthquakes. We extracted 151 lineaments associated with fault-related landforms. In regions with the Dangjin and Yesan faults, lineaments with strikes matching these faults were densely distributed. Conversely, in the Hongseong Fault area, the number of lineaments was smaller, and those with strikes similar to the fault were less discernible. This is likely due to the extensive distribution of alluvium and surface deformation from long-term weathering, erosion, and cultivation, which obscures geomorphic evidence of faults. At five key fault points, we identified fault-related landforms, such as fault saddles, knickpoints in Quaternary alluvium, and linear valleys, along the lineament, which may indicate an actual fault. However, the displacements of the Quaternary layer within the lineaments appear to be influenced more by external factors, such as artificial disturbances (e.g., cultivation) or stream erosion, than by direct fault movement. The differences between the fault-related landforms in this study area and those in the southeastern Korean Peninsula suggest a specific relationship between fault types and their associated landforms.

키워드

과제정보

본 논문에서 사용된 디지털지형자료 구축에 많은 도움을 준 박민정 학부생에게 고마움을 표합니다. 이 논문은 행정안전부 지진 위험분석 및 관리기술개발사업의 지원을 받아 수행된 연구임(2022-MOIS62-001(RS-2022-ND640011)).

참고문헌

  1. 김정찬, 고희재, 이승렬, 이창범, 최성자, 박기화, 김동학, 황재하, 송교영, 이병주, 김유봉, 조등룡, 최현일, 전희영, 김복철, 기원서, 강필종, 진명식, 박덕환, 최범영, 최영섭, 2002, 수치지질도 25만축척 전국, 한국지질자원연구원.
  2. 최위찬, 김규봉, 홍승호, 이병주, 황재하, 박기화, 황상기, 최범영, 송교영, 진명식, 1995, 한국지질도 1:1,000,000, 한국자원연구소
  3. Active Fault Map and Seismic Hazard Map, 2012, National Emergency Management Agency. Diercks, M. L., Grutzner, C., Welte, J., and Ustaszewski, K., 2023, Challenges of geomorphologic analysis of active tectonics in a slowly deforming karst landscape (W Slovenia and NE Italy). Geomorphology, 440, 108894.
  4. Dumont, J.F., Santana, E., and Vilema, W., 2005. Morphologic evidence of active motion of the Zambapala fault, gulf of Guayaquil (Ecuador). Geomorphology, 65, 223-239. http://dx.doi.org/10.1016/j.geomorph.2004.09.003.
  5. Giaconia, F.,Booth-Rea,G.,Martinez-Martinez, J.M., Azanon, J.M., Perez-Pena, J.V., 2012. Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constrictional domain of conjugate strike-slip faults: the Palomares and Polopos fault zones (eastern Betics, SE Spain). Tectonophysics, 580, 27-42. http://dx.doi.org/10.1016/j.tecto.2012.08.028.
  6. Guo, F., Ren, J.J., Guo, H., Su, Q., Ren. J. and Yan X., 2021, Using historical aerial images to accurately locate the urban "invisible" active faults: A case study of the Shuiyu fault of the Datong Basin in Shanxi province, Journal of Geomechanics, 27(2), 254-266 (in Chinese).
  7. Ha, S., Son, M. and Seong, Y.B., 2022, Active Fault Trace Identification Using a LiDAR High-Resolution DEM: A Case Study of the Central Yangsan Fault, Korea. Remote Sensing, 14(19), 4838. https://doi.org/10.3390/rs14194838
  8. Kim, D.E. and Seong, Y.B., 2021, Cumulative Slip Rate of the Southern Yangsan Fault from Geomorphic Indicator and Numerical Dating, Journal of the Korean Geographical Society, 56(2), 201-213 (in Korean).
  9. Kim, T.S. and LEE, C.H., 2023, Identification of Tectonic Lineaments in the Urban Area Using Historic Aerial Photo. Journal of The Korean Geomorphological association, 30(1), 85-100. (in Korean).
  10. Kim, Y.S., Son, M., Choi, J.H., Choi, J.H., Seong, Y.B., and Lee, J.H., 2020, Processes and challenges for the production of Korean active faults map. Journal of the Geological Society of Korea, 56(2), 113-134, 10.14770/jgsk.2020.56.2.113 (in Korean)
  11. Kwon, B.D., Lee, H.S., Lee, C.K., Park, G., and Oh, S., 2003, Electric and Electromagnetic Surveys of the Hongseong Fault Zone, Journal of Korean Earth Science Society, 24(4), 361-368. (in Korean)
  12. Lee, B.J., Kim, D.H., Choi, H.I., Kee, W.S., and Park, K.H., 1996, Explanatory note of the Daejeon Sheet (1:250,000). Korea Institute of Geology, Mining & Materials, 59 p.
  13. Lee, C.H, Seong, Y.B., Oh, J.S. and Kim, D.E., 2019, Tectonic Geomorphology on Yugye-Bogyeongsa Area of Yangsan Fault Zone, Journal of The Korean Geomorphological association, 26(1), 93-106 (in Korean).
  14. Lee, G.R., Park, C.S., and Shin, J.R., 2018, Distribution of Fault-related Landforms and Lineaments Along the Ulsan Fault Zone. Journal of The Korean Geomorphological association, 25(3), 89-103. (in Korean)
  15. Lee, S.M., Kim, H.S., Na, K.W., and Park, B.Y., 1989, Geological map of the Tangjin-Changgohang sheet (1:50,000). Korea Institute of Energy and Resources, 15p.
  16. Lee, S.Y., Seong, Y.B., Shin, Y.K., Choi, K.H., Kang, H.C., and Choi, J.H., 2011, Cosmogenic 10Be and OSL dating of fluvial strath terraces along the Osip-cheon River, Korea: tectonic implications. Geosciences Journal, 15, 359-378.
  17. Molin, P., Pazzaglia, F.J., and Dramis, F., 2004, Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila Massif, Calabria, southern Italy. American Journal of Science, 304, 559-589.
  18. Oh, J.S., 2019, Extraction of Lineament and Its Relationship with Fault Activation in the Gaeum Fault System, Journal of The Korean Geomorphological association, 26(2), 69-84 (in Korean).
  19. Oh, J.S. and Kim, D.E., 2019, Lineament Extraction and Its Comparison Using DEMs based on LiDAR, Digital Topographic Map, and Aerial Photo in the Central Segment of Yangsan Fault, Journal of the Korean Geographical Society, 54(5), 507-525 (in Korean).
  20. O'leary, D. W., Friedman, J. D., and Pohn, H. A., 1976, Lineament, linear, lineation: some proposed new standards for old terms. Geological Society of America Bulletin, 87(10), 1463-1469.
  21. Park, C.S. and Lee, G.R., 2018, Study on Production of DEM Using Aerial Photo, Journal of The Korean Geomorphological association, 25(3), 105-120 (in Korean).
  22. Research and Development of Active fault of Korea Peninsula: Standard procedures and guidelines (manual), 2019, Korea Active Fault Research Group.
  23. Ryoo, C.R., Kim, T.H., Cheon, Y.B., Kim, C.M., Choi, Y., Kim, D.E., Lee, H., Lee, T.H., Lee, H.K., Bae, H.K., and Choi, J.H., 2022, Active Fault in the northeastern part of the Gongju Fault Zone around Munam-ri, Umseong, Korea: Baekmaryeong Fault, Proceedings of the Annual Joint Conference, the Petrological Society of Korea and the Mineralogical Society of Korea, 20-21. (in Korean)
  24. Seismological Annual Report, 2023, Korea Meteorological Administration.
  25. Talebian, M., Copley, A.C., Fattahi, M., Ghoraishi, M., Jackson, J. A., Nazari, H., Sloan, R.A. and Walker, R.T., 2016, Active faulting within a megacity: the geometry and slip rate of the Pardisan thrust in central Tehran, Iran, Geophysical Journal International, 207(3), 1688-1699.