DOI QR코드

DOI QR Code

Production of High-Resolution Long-Term Regional Ocean Reanalysis Data and Diagnosis of Ocean Climate Change in the Northwest Pacific

북서태평양 장기 고해상도 지역해양 재분석 자료 생산 및 해양기후변화 진단

  • Young Ho Kim (Division of Earth Environmental System Science, Pukyong National University)
  • 김영호 (국립부경대학교 지구환경시스템과학부)
  • Received : 2024.06.09
  • Accepted : 2024.06.24
  • Published : 2024.06.30

Abstract

Ocean reanalysis data are extensively used in ocean circulation and climate research by integrating observational data with numerical models. This approach overcomes the spatial and temporal limitations of observational data and provides high-resolution gridded information that considers the physical interactions between ocean variables. In this study, I extended the previously produced 12-year (2011-2022) Northwest Pacific regional ocean reanalysis data to create a long-term reanalysis dataset (K-ORA22E) with a horizontal resolution of 1/24° spanning 30 years (1993-2022). These data were analyzed to diagnose long-term ocean climate change in the Korean marginal seas. Analysis of the K-ORA22E data revealed that the axis of the Kuroshio extension has shifted northward by approximately 6 km per year over the past 30 years, with a significant increase in sea surface temperature north of the Kuroshio axis. Among the waters surrounding the Korean Peninsula, the East Sea exhibited the most significant temperature increase. In the East Sea, the temperature increase was more pronounced in the middle layer than in the surface layer, with the East Korea Warm Current showing a rate two to three times higher than the global average. In the central Yellow Sea, where the Yellow Sea Bottom Cold Water appears, temperatures increased over the long-term, but decreased along the west and south coasts of the Korean Peninsula. These spatial differences in long-term temperature changes appear to be closely related to the heat transport pathways of warm water from the Kuroshio Current. High-resolution regional ocean reanalysis data, such as the K-ORA22E produced in this study, are essential foundational data for understanding long-term variability in the Korean marginal seas and analyzing the impacts of climate change.

해양재분석 자료는 관측 자료를 수치 모델에 동화함으로, 관측 자료의 시공간적인 제약을 극복하고 해양 변수 간의 물리적 상호작용을 고려한 격자화된 고해상도 정보를 제공함으로써 해양순환 및 기후 연구에 광범위하게 사용되고 있다. 이 연구에서는 기존에 생산된 12년간(2011년부터 2022년까지)의 북서태평양 지역해양 재분석 자료를 확장하여 30년간(1993년부터 2022년까지)의 1/24° 수평해상도를 갖는 장기 재분석 자료(K-ORA22E)를 생산하고, 이를 분석하여 한반도 주변해역에서의 장기 해양기후변화를 진단하였다. K-ORA22E 데이터를 통해 한반도 주변 해역의 수온 상승 경향을 분석한 결과, 쿠로시오 확장역에서 쿠로시오의 경로가 지난 30년 동안 1년에 약 6 km 씩 북상하였으며, 쿠로시오 경로의 북쪽에서 수온 상승이 두드러졌다. 한반도 주변 해역 중에서는 동해에서 수온 상승이 가장 뚜렷했다. 특히, 동해에서는 표층보다는 중층에서 수온 상승이 두드러졌으며, 동한난류의 수온 상승률은 전 지구 평균보다 2-3배 높았다. 황해저층냉수가 출현하는 황해 중앙부에서는 장기적으로 수온이 상승하였으나, 한반도 서해안과 남해안에서는 수온이 오히려 감소하는 경향이 나타났다. 이러한 수온의 장기변화의 공간적인 차이는 쿠로시오 해류의 북상에 따른 열수송의 경로와 밀접한 관련이 있을 것으로 보인다. 이 연구에서 구축된 K-ORA22E와 같은 고해상도 지역 해양 재분석 자료는 한반도 주변 해역의 장기 변동성을 이해하고 기후 변화의 영향을 분석하는 데 중요한 기초 자료로 활용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 국립부경대학교 자율창의학술연구비(2024년)에 의하여 연구되었음.

References

  1. Budyko, M.I., 1974, Climate and life. International Geophysics Series, vol. 18. Academic Press, New York, USA, 508 p.
  2. Chang, K.-I., Lyu, S.J., Perkins, H., Lee, D.-K., Watts, D., Kim, Y.B., Mitchell, D., Lee, C.M. and Kim, K., 2004, Circulation and currents in the southwestern East/Japan Sea: Overview and review. Progress In Oceanography, 61, 105-156, doi:10.1016/j.pocean.2004.06.005.
  3. Chang, I., Kim, Y.H., Park, Y.-G., Jin, H., Pak, G., Kwon, J.-I. and Chang, Y.-S., 2024, Assessment of high-resolution regional ocean reanalysis K-ORA22 for the Northwest Pacific. Progress in Oceanography, Under review.
  4. Cheon, W.G., Park, Y.-G., Yeh, S.-W. and Kim, B.-M., 2012, Atmospheric impact on the northwestern Pacific under a global warming scenario. Geophysical Research Letters, 39, L16709.
  5. Cho, Y.K. and Kim, K., 2000, Branching mechanism of the Tsushima Current in the Korea Strait. Journal of Physical Oceanography, 30(11), 2788-2797, doi: 10.1175/1520-0485(2000)030<2788:BMOTTC>2.0.CO;2.
  6. Cooper, M. and Haines, K., 1996, Altimetric assimilation with water property conservation. Journal of Geophysical Research: Oceans, 101(C1), 1059-1077, doi: 10.1029/95JC02902.
  7. Counillon, F. and Bertino, L., 2009, Ensemble Optimal Interpolation: multivariate properties in the Gulf of Mexico. Tellus A: Dynamic Meteorology and Oceanography, 61(2), 296-308, doi: 10.1111/j.1600-0870.2008.00383.x.
  8. Gent, P.R. and McWilliams, J.C., 1990, Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150-155, doi:10.1175/1520-0485(1990)020<0150.
  9. Griffies, S.M. and Hallberg, R.W., 2000, Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Monthly Weather Review 128(8), 2935-2946, doi:10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.
  10. Hu, Y. and Fu, Q., 2007, Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics Discussions, 7, doi:10.5194/acpd-7-9367-2007.
  11. Jeong, S., Cho, S.H. and Kim, Y.H., 2021, A Study on Future Changes of Sea Surface Temperature and Ocean Currents in Northwest Pacific through CMIP6 Model Analysis, The Sea Journal of the Korean Society of Oceanography, 26(4), 291-306. (in Korean)
  12. Kim, C.H. and Kim, K., 1983, Characteristics and origin of the cold water mass along the east coast of Korea. Journal of Oceanological Society of Korea, 18(1), 73-83. (in Korean)
  13. Kim, Y.H., Hwang, C. and Choi, B.J., 2015, An assessment of ocean climate reanalysis by the data assimilation system of KIOST from 1947 to 2012. Ocean Modelling, 91, 1-22, doi: 10.1016/j.ocemod.2015.02.006.
  14. Large, W.G., McWilliams, J.C. and Doney, S.C., 1994, Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization, Reviews of Geophysics, 32, 363-403.
  15. Large, W.G., Danabasoglu, G., Doney, S.C. and McWilliams, J.C., 1997, Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: annual-Mean Climatology, Journal of Physical Oceanography, 27, 2418-2447.
  16. Lee, M., Ro, H., Kim, Y.-B., Park, C.-H. and Baek, S.-H., 2021, Relationship of Spatial Phytoplankton Variability during Spring with Eutrophic Inshore and Oligotrophic Offshore Waters in the East Sea, Including Dokdo, Korea, Journal of Marine Science and Engineering, 9(12), 1455, doi:10.3390/jmse9121455.
  17. Lee, S., Park, M.S., Kwon, M., Park, Y.G., Kim, Y.H. and Choi, N., 2023, Rapidly changing East Asian marine heatwaves under a warming climate. Journal of Geophysical Research: Oceans, 128, e2023JC019761.
  18. Marchesiello, P., McWilliams, J.C. and Shchepetkin, A., 2001, Open boundary conditions for long-term integration of regional oceanic models. Ocean Model, 3, 1-20.
  19. Oke, P.R., Schiller, A., Griffin, D.A. and Brassington, G.B., 2005, Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131(613), 3301-3311, doi: 10.1256/qj.05.95.
  20. Sverdrup, H.U., 1947, Wind-Driven Currents in a Baroclinic Ocean; with Application to the Equatorial Currents of the Eastern Pacific. Proceedings of the National Academy of Sciences, 33 (11), 318-26, doi:10.1073/pnas.33.11.318.
  21. Qiu, B. and Chen, S., 2005, Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal timescales. Journal of Physical Oceanography, 35(12), 2090-2103.
  22. Seo, S.N., 2008, Digital 30sec gridded bathymetric data of Korea marginal seas-KorBathy30s. Journal of Korean Society of Coastal and Ocean Engineers 20(1), 110-120. (in Korean).
  23. Troen, I.B. and Mahrt, L., 1986, A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology, 37, 129-148.
  24. Wang, B., Hirose, N., Kang, B. and Takayama, K., 2014, Seasonal migration of the Yellow Sea bottom cold water. Journal of Geophysical Research: Oceans, 119(7), 4430-4443, doi: 10.1002/2014JC009873.
  25. Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M., Alexander, M., Qiu, B., Visbeck, M., Chang, P.P., Giese, B. and Wu, L., 2012, Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2, doi:10.1038/nclimate1353.