참고문헌
- Al-Bittar, T. and Soubra, A. -H. (2013), "Bearing capacity of strip footings on spatially random soils using sparse polynomial chaos expansion", Int. J. Numer. Anal. Methods Geomech., 37(13), 2039-2060. https://doi.org/10.1002/nag.2120.
- Bai, T., Yang, H., Chen, X., Zhang, S. and Jin, Y. (2020), "In-situ monitoring and reliability analysis of an embankment slope with soil variability", Geomech. Eng., 23(3), 261-273. https://doi.org/10.12989/gae.2020.23.3.261.
- Benmoussa, S., Benmebarek, S. and Benmebarek, N. (2021), "Bearing capacity factor of circular footings on two-layered clay soils", Civ. Eng. J., 7(5), 775-785. https://doi.org/10.28991/cej-2021-03091689.
- Bishop, A.W. (1966), "The strength of soils as engineering materials", Geotechnique, 16(2), 91-130. https://doi.org/10.1680/geot.1966.16.2.91.
- Bransby, M.F. and Randolph, M.F. (1998), "Combined loading of skirted foundations", Geotechnique, 48(5), 637-655. https://doi.org/10.1680/geot.1998.48.5.637.
- Charlton, T.S. and Rouainia, M. (2017), "A probabilistic approach to the ultimate capacity of skirted foundations in spatially variable clay", Struct. Saf., 65, 126-136. https://doi.org/10.1016/j.strusafe.2016.05.002.
- Cho, S.E. (2010), "Probabilistic assessment of slope stability that considers the spatial variability of soil properties", J. Geotech. Geoenviron. Eng., 136(7), 975-984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309.
- Choudhuri, K. and Chakraborty, D. (2021), "Probabilistic Bearing Capacity of a Pavement Resting on Fibre Reinforced Embankment Considering Soil Spatial Variability", Front. Built Environ., 7, 628016. https://doi.org/10.3389/fbuil.2021.628016.
- Choudhuri, K. and Chakraborty, D. (2022), "Probabilistic analyses of three-dimensional circular footing resting on two-layer c-ϕ soil system considering soil spatial variability", Acta Geotech., 17(12), 5739-5758. https://doi.org/10.1007/s11440-022-01701-7.
- Choudhuri, K. and Chakraborty, D. (2023) "Risk assessment of three-dimensional bearing capacity of a circular footing resting on spatially variable sandy soil", Iran. J. Sci. Technol. - Trans. Civ. Eng., 47(6), 3681-3698. https://doi.org/10.1007/s40996-023-01129-3.
- Choudhuri, K. and Chakraborty, D. (2024), "Probability-based analyses of bearing capacity of square and rectangular footings resting on sandy soil considering rotational anisotropy", Acta Geotech., 1-22. https://doi.org/10.1007/s11440-024-02297-w.
- Chwala, M. and Kawa, M. (2021), "Random failure mechanism method for assessment of working platform bearing capacity with a linear trend in undrained shear strength", J. Rock Mech. Geotech. Eng., 13(6), 1513-1530. https://doi.org/10.1016/j.jrmge.2021.06.004.
- Das, S. and Chakraborty, D. (2024), "Influence of rotated anisotropy and spatial variability of undrained clay on bearing capacity of strip footings under eccentric loading", Comput. Geotech., 172, 106443. https://doi.org/10.1016/j.compgeo.2024.106443.
- Deng, Z.P., Pan, M., Niu, J.T., Jiang, S.H. and Qian, W.W. (2021), "Slope reliability analysis in spatially variable soils using sliced inverse regression-based multivariate adaptive regression spline", Bull. Eng. Geol. Environ., 80, 7213-7226. https://doi.org/10.1007/s10064-021-02353-9.
- Deng, Z.P., Pan, M., Niu, J.T. and Jiang, S.H. (2022), "Full probability design of soil slopes considering both stratigraphic uncertainty and spatial variability of soil properties", Bull. Eng. Geol. Environ., 81(5), 195. https://doi.org/10.1007/s10064-022-02702-2.
- El-Ramly, H., Morgenstern, N.R. and Cruden, D.M. (2003), "Probabilistic stability analysis of a tailings dyke on presheared clay-shale", Can. Geotech. J., 40(1), 192-208. https://doi.org/10.1139/t02-095.
- EN1990 (2002), Basis of structural design, European Committee for Standardization; Brussels, Belgium.
- Fenton, G.A. and Griffiths, D.V. (2002), "Probabilistic foundation settlement on spatially random soil", J. Geotech. Geoenviron. Eng., 128(5), 381-390. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(381).
- FLAC3D (2012), Fast Lagrangian analysis of continua, version 5.01: user's and theory manuals, Itasca Consulting Group Inc., Minneapolis, USA.
- Griffiths, D.V., Fenton, G.A. and Manoharan, N. (2002), "Bearing capacity of rough rigid strip footing on cohesive soil: probabilistic study", J. Geotech. Geoenviron. Eng., 128(9), 743-755. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(743).
- Griffiths, D.V. and Fenton, G.A. (2004), "Probabilistic slope stability analysis by finite elements", J. Geotech. Geoenviron. Eng., 130(5), 507-518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507).
- Griffiths, D.V. and Fenton, G.A. (2009), "Probabilistic settlement analysis by stochastic and random finite-element methods", J. Geotech. Geoenviron. Eng., 135(11), 1629-1637. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000126.
- Haldar, S. and Sivakumar Babu, G.L. (2008), "Effect of soil spatial variability on the response of laterally loaded pile in undrained clay", Comput. Geotech., 35, 537-547. https://doi.org/10.1016/j.compgeo.2007.10.004.
- Halder, K. and Chakraborty, D. (2020a), "Influence of soil spatial variability on the response of strip footing on geocell-reinforced slope", Comput. Geotech., 122, 103533. https://doi.org/10.1016/j.compgeo.2020.103533.
- Halder, K. and Chakraborty, D. (2020b) "Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope", Geomech. Eng., 23(1), 15-30 https://doi.org/10.12989/gae.2020.23.1.015.
- Houlsby, G.T. and Martin, C.M. (2003), "Undrained bearing capacity factors for conical footings on clay", Geotechnique, 53(5), 513-520. https://doi.org/10.1680/geot.2003.53.5.513.
- Jamshidi Chenari, R. and Mahigir, A. (2014), "The effect of spatial variability and anisotropy of soils on bearing capacity of shallow foundations", Civ. Eng. Infrastruct. J., 47(2), 199-213. https://doi.org/10.7508/ceij.2014.02.004.
- Jamshidi Chenari, R. and Alaie, R. (2015), "Effects of anisotropy in correlation structure on the stability of an undrained clay slope", Georisk, 9(2), 109-123. https://doi.org/10.1080/17499518.2015.1037844.
- Jha, S.K. (2016), "Reliability-based analysis of bearing capacity of strip footings considering anisotropic correlation of spatially varying undrained shear strength", Int. J. Geomech., 16(5), 06016003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000638.
- Jiang, S.H. and Huang, J. (2018), "Modeling of non-stationary random field of undrained shear strength of soil for slope reliability analysis", Soils Found., 58(1), 185-198. https://doi.org/10.1016/j.sandf.2017.11.006.
- Jiang, S.H., Huang, J., Griffiths, D.V. and Deng, Z.P. (2022), "Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review". Comput. Geotech., 141, 104498. https://doi.org/10.1016/j.compgeo.2021.104498.
- Kasama, K. and Whittle, A.J. (2016), "Effect of spatial variability on the slope stability using Random Field Numerical Limit analysis", Georisk, 10(1), 42-54. https://doi.org/10.1080/17499518.2015.1077973.
- Kawa, M. and Pula, W. (2020), "3D bearing capacity probabilistic analyses of footings on spatially variable c-ϕ soil", Acta Geotech., 15(6), 1453-1466. https://doi.org/10.1007/s11440-019-00853-3.
- Khatri, V.N. and Kumar, J. (2009), "Bearing capacity factor Nc under ϕ = 0 condition for piles in clays", Int. J. Numer. Anal. Methods Geomech., 33(9), 1203-1225. https://doi.org/10.1002/nag.763.
- Krishnan, K. and Chakraborty, D. (2022), "Probabilistic study on the bearing capacity of strip footing subjected to combined effect of inclined and eccentric loads", Comput. Geotech., 141, 104505,. https://doi.org/10.1016/j.compgeo.2021.104505.
- Kusakabe, O., Suzuki, H. and Nakase, A. (1986), "An upper bound calculation on bearing capacity of a circular footing on a non-homogeneous clay", Soils Found., 26(3), 143-148. https://doi.org/10.3208/sandf1972.26.3_143.
- Li, D.Q., Qi, X.H., Phoon, K.K., Zhang, L.M. and Zhou, C.B. (2014), "Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes", Struct. Saf., 49, 45-55. https://doi.org/10.1016/j.strusafe.2013.08.005.
- Li, D.Q., Qi, X.H., Cao, Z.J., Tang, X.S., Zhou, W., Phoon, K.K. and Zhou, C.B. (2015), "Reliability analysis of strip footing considering spatially variable undrained shear strength that linearly increases with depth", Soils Found., 55(4), 866-880. https://doi.org/10.1016/j.sandf.2015.06.017.
- Li, Y., Liu, K., Zhang, B. and Xu, N. (2019), "Reliability of shape factors for bearing capacity of square footings on spatially varying cohesive soils", Int. J. Geomech., 20(3), 04019195. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001614.
- Li, T., Gong, W. and Tang, H. (2021), "Three-dimensional stochastic geological modeling for probabilistic stability analysis of a circular tunnel face", Tunn. Undergr. Sp. Tech., 118, 104190. https://doi.org/10.1016/j.tust.2021.104190.
- Li, T., Pan, Q., Shen, Z. and Gong, W. (2022), "Probabilistic stability analysis of a tunnel face in spatially random Hoek-Brown rock masses with a multi-tangent method", Rock Mech. Rock Eng., 55(6), 3545-3561. https://doi.org/10.1007/s00603-022-02821-y.
- Lombardi, M., Cardarilli, M. and Raspa, G. (2017), "Spatial variability analysis of soil strength to slope stability assessment", Geomech. Eng., 12(3), 483-503. https://doi.org/10.12989/gae.2017.12.3.483.
- Luo, Z., Atamturktur, S., Cai, Y. and Juang, C.H. (2011), "Reliability analysis of basal- heave in a braced excavation in a 2-D random field", Comput. Geotech., 39, 27-37. https://doi.org/10.1016/j.compgeo.2011.08.005.
- Lumb, P. (1966), "The variability of natural soils", Can. Geotech. J., 3(2), 74-97. https://doi.org/10.1139/t66-009.
- Majumder, M. and Chakraborty, D. (2021), "Three-dimensional numerical analysis of under-reamed pile in clay under lateral loading", Innov. Infrastruct. Solut., 6(2), 1-17. https://doi.org/10.1007/s41062-020-00428-2.
- Sivakumar Babu, G.L. and Mukesh, M.D. (2004), "Effect of soil variability on reliability of soil slopes", Geotechnique, 54(5), 335-337. https://doi.org/10.1680/geot.2004.54.5.335.
- Shen, Z., Jin, D., Pan, Q., Yang, H. and Chian, S.C. (2020), "Probabilistic analysis of strip footings on spatially variable soils with linearly increasing shear strength", Comput. Geotech., 126, 103653. https://doi.org/10.1016/j.compgeo.2020.103653.
- Shen, Z., Jin, D., Pan, Q., Yang, H. and Chian, S.C. (2021), "Effect of soil spatial variability on failure mechanisms and undrained capacities of strip foundations under uniaxial loading", Comput. Geotech., 139, 104387. https://doi.org/10.1016/j.compgeo.2021.104387.
- Shu, S., Gao, Y. and Wu, Y. (2020), "Probabilistic bearing capacity analysis of spudcan foundation in soil with linearly increasing mean undrained shear strength", Ocean Eng., 204, 106800. https://doi.org/10.1016/j.oceaneng.2019.106800.
- Srivastava, A. and Sivakumar Babu, G.L. (2009), "Effect of soil variability on the bearing capacity of clay and in slope stability problems", Eng. Geol., 108(1-2), 142-152. https://doi.org/10.1016/j.enggeo.2009.06.023.
- Srivastava, A. and Sivakumar Babu, G.L. (2011), "Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile", Geomech. Eng., 3(3), 169-188. https://doi.org/10.12989/gae.2011.3.3.169.
- The MathWorks Inc. (2020), MATLAB (R2020b), version 9.9, Massachusetts, United States. https://www.mathworks.com
- U.S. Army Corps of Engineers (USACE) (1997), Engineering and design: Introduction to probability and reliability methods for use in geotechnical engineering, Eng. Circ. 1110-2-547, U.S. Dept. of the Army, Washington, DC.
- Wu, Y., Zhou, X., Gao, Y., Zhang, L. and Yang, J. (2019), "Effect of soil variability on bearing capacity accounting for nonstationary characteristics of undrained shear strength", Comput. Geotech., 110, 199-210. https://doi.org/10.1016/j.compgeo.2019.02.003.
- Wu, Y., Zhou, X., Gao, Y. and Shu, S. (2020), "Bearing capacity of embedded shallow foundations in spatially random soils with linearly increasing mean undrained shear strength", Comput. Geotech., 122, 103508. https://doi.org/10.1016/j.compgeo.2020.103508.
- Yi, J.T., Huang, L.Y., Li, D.Q. and Liu, Y. (2020), "A largede-formation random finite-element study: failure mechanism and bearing capacity of spudcan in a spatially varying clayey seabed", Geotechnique, 70(5), 392-405. https://doi.org/10.1680/jgeot.18.P.171.
- Yoo, C. (2016), "Effect of spatial characteristics of a weak zone on tunnel deformation behavior", Geomech. Eng., 11(1), 41-58. https://doi.org/10.12989/gae.2016.11.1.041.
- Zhao, C., Gong, W., Li, T., Juang, C.H., Tang, H. and Wang, H. (2021), "Probabilistic characterization of subsurface stratigraphic configuration with modified random field approach", Eng. Geol., 288, 106138. https://doi.org/10.1016/j.enggeo.2021.106138.
- Zhu, D., Griffiths, D.V., Huang, J. and Fenton, G.A. (2017), "Probabilistic stability analyses of undrained slopes with linearly increasing mean strength", Geotechnique, 67(8), 733-746. https://doi.org/10.1680/jgeot.16.P.223.