DOI QR코드

DOI QR Code

Effects of graphene platelet presence and porosity distribution on the vibration of piezoelectric sinusoidal sandwich beam

  • Mojtaba Mehrabi (Department of Mechanics, Faculty of Engineering, University of Isfahan) ;
  • Keivan Torabi (Department of Mechanics, Faculty of Engineering, University of Isfahan)
  • 투고 : 2023.10.13
  • 심사 : 2024.06.26
  • 발행 : 2024.07.10

초록

In recent years, the focus on vibration analysis of multilayer smart structures has attracted considerable attention in many engineering applications. In this work, vibration analysis of a three-layer microporous beam with a core amplified by a composite material reinforced with graphene platelets and two piezoelectric thin films is discussed. It is assumed that piezoelectric layers with a thickness of 0.01 core are very thin and the properties of the matrix and reinforcement vary in the thickness directions. The governing equations of motion are obtained using an energy approach and the method of numerical differential quadrature to solve them. The results of this work are compared to other research and there is good agreement between them. The influences of the volumetric weight fraction of graphene wafers, different graphene platelets distributions, porosity distribution, mass scale parameters and thin ratio of graphene platelets take into account the natural dimensionless frequencies of the micro-beam. The results of this study show that the symmetric distribution of graphene platelets based on the symmetric porosity distribution has a great influence on the natural frequencies without basic dimension of the micro-beam, while the shape ratios of graphene platelets do not have a significant influence on natural frequency changes.

키워드

과제정보

The authors would like to thank the University of Isfahan and the reviewers for their valuable comments and suggestions to improve the clarity of this work.

참고문헌

  1. Akbari Alashti, R. and Khorsand, M. (2012), "Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layer by DQ-FD coupled", Int. J. Press. Ves. Pip., 96-97, 49-67. https://doi.org/10.1016/j.ijpvp.2012.06.006.
  2. Akgoz, B. and Civalek, O . (2014), "A new trigonometric beam model for buckling of strain gradient microbeams", Int. J. Eng. Sci., 81, 88-94. https://doi.org/10.1016/j.ijmecsci.2014.02.013.
  3. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
  4. Ansari, R., Gholami, R. and Sahmani, S. (2014), "Free vibration of size-dependent functionally graded microbeams based on the strain gradient reddy beam theory", Int. J. Comput. Meth. Eng. Sci. Mech, 15(5), 401-412. https://doi.org/10.1080/15502287.2014.915249.
  5. Arefi, M. (2021), "Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells", Mech. Bas. Des. Struct. Mach., 49(6), 781-810. https://doi.org/10.1080/15397734.2019.1698435.
  6. Babaei, H. and Eslami, M.R. (2020), "Size-dependent vibrations of thermally pre/post-buckled FG porous micro-tubes based on modified couple stress theory", Int. J. Mech. Sci., 180, 105694. https://doi.org/10.1016/j.ijmecsci.2020.105694.
  7. Fang, W., Yu, T., Lich, L.V. and Bui, T.Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and iso-geometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
  8. Hao, Y.X., Cao, Z., Zhang, W., Chen, J. and Yao, M.H. (2019), "Stability analysis for geometric nonlinear functionally graded sandwich shallow shell using a new developed displacement field", Compos. Struct., 210, 202-216. https://doi.org/10.1016/j.compstruct.2018.11.027.
  9. Hao, Y.X., Wang, M.X., Zhang, W., Yang, S.W., Liu, L.T. and Qian, Y.H. (2021), "Bending-torsion coupling bursting oscillation of a sandwich conical panel under parametric excitation", J. Sound. Vib., 495, 115904. https://doi.org/10.1016/j.jsv.2020.115904.
  10. Jia, Y., Wei, X., Xu, L., Wang, C., Lian, P., Xue, S., Al-Saadi, A. and Shi, Y. (2019), "Multiphysics vibration FE model of piezoelectric macro fibre composite on carbon fibre composite structures", Compos. Part B: Eng., 161, 376-385. https://doi.org/10.1016/j.compositesb.2018.12.081.
  11. Kasim, H., Boztoprak, Y. and Yazici, M. (2023), "Investigation of crack detection properties of elastomer-based nanocomposites under cyclic strain loading with graphene and carbon black interaction filler", J. Thermoplast. Compos. Mater., 36(4), 1576-1605. https://doi.org/10.1177/08927057211067703.
  12. Khaje Khabaz, M., Eftekhari, S.A., Hashemian, M. and Toghraie, D. (2020), "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories", Physica A: Statist. Mech. Appl., 546, 123998. https://doi.org/10.1016/j.physa.2019.123998.
  13. Khayat, M., Baghlani, A. and Najafgholipour, M.A. (2020), "The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets", Compos. Struct., 258, 113209. https://doi.org/10.1016/j.compstruct.2020.113209.
  14. Kumar, P. and Harsha, S.P. (2023), "Vibration response analysis of sigmoidal functionally graded piezoelectric (FGP) porous plate under thermo-electric environment", Mech. Bas. Des. Struct. Mach., 51(8), 4604-4634. https://doi.org/10.1080/15397734.2021.1971090.
  15. Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  16. Lei, J., He, Y., Zhang, B., Gan, Zh. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012.
  17. Li, Z., Lin, B., Chen, B., Zhao, X. and Li, Y. (2022), "Free vibration, buckling and dynamic stability of Timoshenko micro/nano-beam supported on Winkler-Pasternak foundation under a follower axial load", Int. J. Mech. Sci., 22(9), 2250113. https://doi.org/10.1142/S0219455422501139.
  18. Liebold, Ch. and Muller, W.H. (2015), "Applications of Strain Gradient Theories to the Size Effect in Submicro-Structures incl", Exp. Anal. Elast. Mater. Param. Bull. TICMI, 19(1), 45-55.
  19. Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095.
  20. Mehrabi, M., Mohammadimehr, M. and Mousavinejad, F.S. (2021), "2D magneto-mechanical vibration analysis of a micro composite Timoshenko beam resting on orthotropic medium", Smart Struct. Syst., 27(1), 1-18. https://doi.org/10.12989/sss.2021.27.1.001.
  21. Meski, A., Sekkal, M., Bouiadjra, R.B., Benyoucef, S. and Tounsi, A. (2023), "Assessing the effect of temperature-dependent properties on the dynamic behavior of FG porous beams rested on variable elastic foundation", Struct. Eng. Mech., 85(6), 717-728. https://doi.org/10.12989/sem.2023.85.6.717.
  22. Messai, A. Fortas, L., Merzouki, T. and Houari, M.S.A. (2022), "Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory", Struct. Eng. Mech., 81(4), 461-479. https://doi.org/10.12989/sem.2022.81.4.461.
  23. Miao, X., Li, Ch. and Jiang, Y. (2021), "Free vibration analysis of metal-ceramic matrix composite laminated cylindrical shell reinforced by CNTs", Compos. Struct., 260, 113262. https://doi.org/10.1016/j.compstruct.2020.113262.
  24. Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513.
  25. Nachiappan Sevugan, A., Murugan, H., Ramamoorthy, M. and Rajamohan, V. (2023), "Modeling and analysis of tapered composite beams with piezoelectric energy harvester: Numerical and experimental investigations", Mech. Bas. Des. Struct. Mach., 52(4), 2173-2192. https://doi.org/10.1080/15397734.2023.2172031.
  26. Nakamura, T., Wang, T. and Sampath, S. (2000), "Determination of Properties of graded materials by inverse analysis and instrumented indentation", Acta. Mater., 48(17), 4293-4306. https://doi.org/10.1016/S1359-6454(00)00217-2.
  27. Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flow", Alex. Eng. J., 60(1), 1945-1954. https://doi.org/10.1016/j.aej.2020.11.042.
  28. Nguyen, N.V., Lee, J. and Nguyen-Xuan, H. (2019), "Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers", Compos. Part B: Eng., 172, 769-784. https://doi.org/10.1016/j.compositesb.2019.05.060.
  29. Nguyen, N.V., Nguyen-Xuan, H., Nguyen, T.N., Kang, J. and Lee, J. (2020), "A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement", Compos. Struct., 259, 113213. https://doi.org/10.1016/j.compstruct.2020.113213.
  30. Nikolic, A. (2023), "Free vibration and buckling characteristics of uniform beam: A modified segmented rod method", Int. J. Mech. Sci., 23(3), 2350029. https://doi.org/10.1142/S0219455423500293.
  31. Sobhy, M., Abazid, M.A. and Mukahal, F. (2022), "Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions", Adv. Mech. Eng., 4(14), 1-20. https://doi.org/10.1177/16878132221091005.
  32. Tabatabaei Nejhad, S.Z., Malekzadeh, P. and Eghtesad, M. (2020), "Out-of-plane vibration of laminated FG-GPLRC curved beams with piezoelectric layers", Thin Wall. Struct., 150, 106678. https://doi.org/10.1016/j.tws.2020.106678.
  33. Tao, Ch. and Dai, T. (2021a), "Analyses of thermal buckling and secondary instability of post-buckled S-FGM plates with porosities based on a mesh-free method", Appl. Math. Model., 89(1), 268-284. https://doi.org/10.1016/j.apm.2020.07.032.
  34. Tao, Ch. and Dai, T. (2021b), "Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates", Eur. J. Mech. A/Solid., 86, 104171. https://doi.org/10.1016/j.compstruct.2020.113258.
  35. Vahdat, M., Ashenai Ghasemi, F. and Mosayyebi, M. (2022), "Strain gradient vibration analysis of piezoelectric composite microplate reinforced with FG-GPLs based on sinusoidal shear deformation theory", Mech. Bas. Des. Struct. Mach., 51(12), 6947-6975. https://doi.org/10.1080/15397734.2022.2081976.
  36. Wang, A., Chen, H., Hao, Y. and Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Result. Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
  37. Wang, Y. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880.
  38. Wu, D.H., Chien, W.T., Yang Ch.J. and Yen, Y.T. (2005), "Coupled-field analysis of piezoelectric beam actuator using FEM", Sensor. Actuat. Phys., 118(1), 171-176. https://doi.org/10.1016/j.sna.2004.04.017.
  39. Zhang, J. and Yao, Y. (2024), "Strain gradient theory-based vibration analyses for functionally graded microbeams reinforced by GPL", Physica Scripta, 99(4), 045966. https://doi.org/10.1088/1402-4896/ad3290.
  40. Zhao, Sh., Zhao, Zh., Yang, Zh., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339.
  41. Zhao, Z., Wang, B., Qian, Zh. and Yong, Y.K. (2020), "A novel approach to quantitative predictions of high-frequency coupled vibrations in layered piezoelectric plates", Int. J. Eng. Sci., 157, 103407. https://doi.org/10.1016/j.ijengsci.2020.103407.
  42. Zhu, Ch., Fang, X., Liu, J., Nie, G. and Zhang, C. (2022), "An analytical solution for nonlinear vibration control of sandwich shallow doubly-curved nanoshells with functionally graded piezoelectric nanocomposite sensors and actuators", Mech. Bas. Des. Struct. Mach., 50(7), 2508-2534. https://doi.org/10.1080/15397734.2020.1779742.