Acknowledgement
The authors would like to thank the University of Isfahan and the reviewers for their valuable comments and suggestions to improve the clarity of this work.
References
- Akbari Alashti, R. and Khorsand, M. (2012), "Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layer by DQ-FD coupled", Int. J. Press. Ves. Pip., 96-97, 49-67. https://doi.org/10.1016/j.ijpvp.2012.06.006.
- Akgoz, B. and Civalek, O . (2014), "A new trigonometric beam model for buckling of strain gradient microbeams", Int. J. Eng. Sci., 81, 88-94. https://doi.org/10.1016/j.ijmecsci.2014.02.013.
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
- Ansari, R., Gholami, R. and Sahmani, S. (2014), "Free vibration of size-dependent functionally graded microbeams based on the strain gradient reddy beam theory", Int. J. Comput. Meth. Eng. Sci. Mech, 15(5), 401-412. https://doi.org/10.1080/15502287.2014.915249.
- Arefi, M. (2021), "Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells", Mech. Bas. Des. Struct. Mach., 49(6), 781-810. https://doi.org/10.1080/15397734.2019.1698435.
- Babaei, H. and Eslami, M.R. (2020), "Size-dependent vibrations of thermally pre/post-buckled FG porous micro-tubes based on modified couple stress theory", Int. J. Mech. Sci., 180, 105694. https://doi.org/10.1016/j.ijmecsci.2020.105694.
- Fang, W., Yu, T., Lich, L.V. and Bui, T.Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and iso-geometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
- Hao, Y.X., Cao, Z., Zhang, W., Chen, J. and Yao, M.H. (2019), "Stability analysis for geometric nonlinear functionally graded sandwich shallow shell using a new developed displacement field", Compos. Struct., 210, 202-216. https://doi.org/10.1016/j.compstruct.2018.11.027.
- Hao, Y.X., Wang, M.X., Zhang, W., Yang, S.W., Liu, L.T. and Qian, Y.H. (2021), "Bending-torsion coupling bursting oscillation of a sandwich conical panel under parametric excitation", J. Sound. Vib., 495, 115904. https://doi.org/10.1016/j.jsv.2020.115904.
- Jia, Y., Wei, X., Xu, L., Wang, C., Lian, P., Xue, S., Al-Saadi, A. and Shi, Y. (2019), "Multiphysics vibration FE model of piezoelectric macro fibre composite on carbon fibre composite structures", Compos. Part B: Eng., 161, 376-385. https://doi.org/10.1016/j.compositesb.2018.12.081.
- Kasim, H., Boztoprak, Y. and Yazici, M. (2023), "Investigation of crack detection properties of elastomer-based nanocomposites under cyclic strain loading with graphene and carbon black interaction filler", J. Thermoplast. Compos. Mater., 36(4), 1576-1605. https://doi.org/10.1177/08927057211067703.
- Khaje Khabaz, M., Eftekhari, S.A., Hashemian, M. and Toghraie, D. (2020), "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories", Physica A: Statist. Mech. Appl., 546, 123998. https://doi.org/10.1016/j.physa.2019.123998.
- Khayat, M., Baghlani, A. and Najafgholipour, M.A. (2020), "The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets", Compos. Struct., 258, 113209. https://doi.org/10.1016/j.compstruct.2020.113209.
- Kumar, P. and Harsha, S.P. (2023), "Vibration response analysis of sigmoidal functionally graded piezoelectric (FGP) porous plate under thermo-electric environment", Mech. Bas. Des. Struct. Mach., 51(8), 4604-4634. https://doi.org/10.1080/15397734.2021.1971090.
- Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Lei, J., He, Y., Zhang, B., Gan, Zh. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012.
- Li, Z., Lin, B., Chen, B., Zhao, X. and Li, Y. (2022), "Free vibration, buckling and dynamic stability of Timoshenko micro/nano-beam supported on Winkler-Pasternak foundation under a follower axial load", Int. J. Mech. Sci., 22(9), 2250113. https://doi.org/10.1142/S0219455422501139.
- Liebold, Ch. and Muller, W.H. (2015), "Applications of Strain Gradient Theories to the Size Effect in Submicro-Structures incl", Exp. Anal. Elast. Mater. Param. Bull. TICMI, 19(1), 45-55.
- Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095.
- Mehrabi, M., Mohammadimehr, M. and Mousavinejad, F.S. (2021), "2D magneto-mechanical vibration analysis of a micro composite Timoshenko beam resting on orthotropic medium", Smart Struct. Syst., 27(1), 1-18. https://doi.org/10.12989/sss.2021.27.1.001.
- Meski, A., Sekkal, M., Bouiadjra, R.B., Benyoucef, S. and Tounsi, A. (2023), "Assessing the effect of temperature-dependent properties on the dynamic behavior of FG porous beams rested on variable elastic foundation", Struct. Eng. Mech., 85(6), 717-728. https://doi.org/10.12989/sem.2023.85.6.717.
- Messai, A. Fortas, L., Merzouki, T. and Houari, M.S.A. (2022), "Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory", Struct. Eng. Mech., 81(4), 461-479. https://doi.org/10.12989/sem.2022.81.4.461.
- Miao, X., Li, Ch. and Jiang, Y. (2021), "Free vibration analysis of metal-ceramic matrix composite laminated cylindrical shell reinforced by CNTs", Compos. Struct., 260, 113262. https://doi.org/10.1016/j.compstruct.2020.113262.
- Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513.
- Nachiappan Sevugan, A., Murugan, H., Ramamoorthy, M. and Rajamohan, V. (2023), "Modeling and analysis of tapered composite beams with piezoelectric energy harvester: Numerical and experimental investigations", Mech. Bas. Des. Struct. Mach., 52(4), 2173-2192. https://doi.org/10.1080/15397734.2023.2172031.
- Nakamura, T., Wang, T. and Sampath, S. (2000), "Determination of Properties of graded materials by inverse analysis and instrumented indentation", Acta. Mater., 48(17), 4293-4306. https://doi.org/10.1016/S1359-6454(00)00217-2.
- Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flow", Alex. Eng. J., 60(1), 1945-1954. https://doi.org/10.1016/j.aej.2020.11.042.
- Nguyen, N.V., Lee, J. and Nguyen-Xuan, H. (2019), "Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers", Compos. Part B: Eng., 172, 769-784. https://doi.org/10.1016/j.compositesb.2019.05.060.
- Nguyen, N.V., Nguyen-Xuan, H., Nguyen, T.N., Kang, J. and Lee, J. (2020), "A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement", Compos. Struct., 259, 113213. https://doi.org/10.1016/j.compstruct.2020.113213.
- Nikolic, A. (2023), "Free vibration and buckling characteristics of uniform beam: A modified segmented rod method", Int. J. Mech. Sci., 23(3), 2350029. https://doi.org/10.1142/S0219455423500293.
- Sobhy, M., Abazid, M.A. and Mukahal, F. (2022), "Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions", Adv. Mech. Eng., 4(14), 1-20. https://doi.org/10.1177/16878132221091005.
- Tabatabaei Nejhad, S.Z., Malekzadeh, P. and Eghtesad, M. (2020), "Out-of-plane vibration of laminated FG-GPLRC curved beams with piezoelectric layers", Thin Wall. Struct., 150, 106678. https://doi.org/10.1016/j.tws.2020.106678.
- Tao, Ch. and Dai, T. (2021a), "Analyses of thermal buckling and secondary instability of post-buckled S-FGM plates with porosities based on a mesh-free method", Appl. Math. Model., 89(1), 268-284. https://doi.org/10.1016/j.apm.2020.07.032.
- Tao, Ch. and Dai, T. (2021b), "Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates", Eur. J. Mech. A/Solid., 86, 104171. https://doi.org/10.1016/j.compstruct.2020.113258.
- Vahdat, M., Ashenai Ghasemi, F. and Mosayyebi, M. (2022), "Strain gradient vibration analysis of piezoelectric composite microplate reinforced with FG-GPLs based on sinusoidal shear deformation theory", Mech. Bas. Des. Struct. Mach., 51(12), 6947-6975. https://doi.org/10.1080/15397734.2022.2081976.
- Wang, A., Chen, H., Hao, Y. and Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Result. Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
- Wang, Y. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880.
- Wu, D.H., Chien, W.T., Yang Ch.J. and Yen, Y.T. (2005), "Coupled-field analysis of piezoelectric beam actuator using FEM", Sensor. Actuat. Phys., 118(1), 171-176. https://doi.org/10.1016/j.sna.2004.04.017.
- Zhang, J. and Yao, Y. (2024), "Strain gradient theory-based vibration analyses for functionally graded microbeams reinforced by GPL", Physica Scripta, 99(4), 045966. https://doi.org/10.1088/1402-4896/ad3290.
- Zhao, Sh., Zhao, Zh., Yang, Zh., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339.
- Zhao, Z., Wang, B., Qian, Zh. and Yong, Y.K. (2020), "A novel approach to quantitative predictions of high-frequency coupled vibrations in layered piezoelectric plates", Int. J. Eng. Sci., 157, 103407. https://doi.org/10.1016/j.ijengsci.2020.103407.
- Zhu, Ch., Fang, X., Liu, J., Nie, G. and Zhang, C. (2022), "An analytical solution for nonlinear vibration control of sandwich shallow doubly-curved nanoshells with functionally graded piezoelectric nanocomposite sensors and actuators", Mech. Bas. Des. Struct. Mach., 50(7), 2508-2534. https://doi.org/10.1080/15397734.2020.1779742.