DOI QR코드

DOI QR Code

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian (School of Civil Engineering, Hunan University of Science and Technology) ;
  • Chao Zhao (School of Civil Engineering, Hunan University of Science and Technology) ;
  • Yi Zhou (School of Civil Engineering, Hunan University of Science and Technology) ;
  • Xingu Zhong (Hunan Provincial Key Laboratory of Structures for Wind Resistance and Vibration Control) ;
  • Xiong Peng (School of Civil Engineering, Hunan University of Science and Technology) ;
  • Qunyu Yang (School of Civil Engineering, Hunan University of Science and Technology)
  • Received : 2022.07.01
  • Accepted : 2024.06.19
  • Published : 2024.07.10

Abstract

In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.

Keywords

Acknowledgement

The research described in this paper is financially supported by the Natural Science Foundation of China (52178285), the Natural Science Foundation of Hunan Province (2020JJ5195) and Scientific Research Foundation of Hunan Provincial Education Department (CN) (20B218). The supports are gratefully acknowledged.

References

  1. Ahmad, Z. and Thambiratnam, D.P. (2009), "Application of foam-filled conical tubes in enhancing the crashworthiness performance of vehicle protective structures", Int. J. Crashworth., 14(4), 349-363. https://doi.org/10.1080/13588260902775041.
  2. Ahmad, Z. and Thambiratnam, D.P. (2009), "Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading", Comput. Struct., 87(3-4), 186-197. https://doi.org/10.1016/j.compstruc.2008.10.003.
  3. An, X., Gao, Y., Fang, J., Sun, G. and Li, Q. (2015), "Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets", Thin Wall. Struct., 91, 63-71. https://doi.org/10.1016/j.tws.2015.01.011.
  4. Asavavisithchai, S., Preuksarattanawut, T. and Nisaratanaporn, E. (2014), "Microstructure and compressive properties of open-cell silver foams with different pore architectures", Materials Testing, 56(6), 458-461. https://doi.org/10.1016/j.mspro.2014.07.592.
  5. Azarakhsh, S., Rahi, A., Ghamarian, A. and Motamedi, H. (2015), "Axial crushing analysis of empty and foam-filled brass bitubular cylinder tubes", Thin Wall. Struct., 95, 60-72. https://doi.org/10.1016/j.tws.2015.05.019.
  6. Dirgantara, T., Jusuf, A., Kurniati, E.O., Gunawan, L. and Putra, I.S. (2018), "Crashworthiness analysis of foam-filled square column considering strain rate effect of the foam", Thin Wall. Struct., 129, 365-380. https://doi.org/10.1016/j.tws.2018.04.004.
  7. Dukhan, N., Rayess, N. and Hadley, J. (2010), "Characterization of aluminum foam-polypropylene interpenetrating phase composites: Flexural test results", Mech. Mater., 42(2), 134-141. https://doi.org/10.1016/j.mechmat.2009.09.010.
  8. Goel, M.D. (2015), "Deformation, energy absorption and crushing behavior of single-, double-and multi-wall foam filled square and circular tubes", Thin Wall. Struct., 90, 1-11. https://doi.org/10.1016/j.tws.2015.01.004.
  9. Hanssen, A.G., Langseth, M. and Hopperstad, O.S. (2000), "Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler", Int. J. Impact Eng., 24(5), 475-507. https://doi.org/10.1016/S0734-743X(99)00170-0.
  10. Hanssen, A.G., Langseth, M. and Hopperstad, O.S. (1999), "Static crushing of square aluminium extrusions with aluminium foam filler", Int. J. Mech. Sci., 41(8), 967-993. https://doi.org/10.1016/S0020-7403(98)00064-2.
  11. Hanssen, A.G., Langseth, M. and Hopperstad, O.S. (2000), "Static and dynamic crushing of square aluminium extrusions with aluminium foam filler", Int. J. Impact Eng., 24(4), 347-383. https://doi.org/10.1016/S0734-743X(99)00169-4.
  12. Liu, Q., Ma, J., He, Z., Hu, Z. and Hui, D. (2017), "Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes", Compos. Part B: Eng., 121, 134-144. https://doi.org/10.1016/j.compositesb.2017.03.034.
  13. Liu, S. and Li, A. (2018), "Hysteretic friction behavior of aluminum foam/polyurethane interpenetrating phase composites", Compos. Struct., 203, 18-29. https://doi.org/10.1016/j.compstruct.2018.07.004.
  14. Liu, S., Li, A. and Xuan, P. (2019), "Mechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compression", Compos. Part A: Appl. Sci. Manuf., 116, 87-97. https://doi.org/10.1016/j.compositesa.2018.10.026.
  15. Liu, X., Wang, Y., He, X., Liu, H. and Cao, S. (2024), "Deformation failure mechanism and constitutive model of gradient aluminum foam under impact loading", Compos. Struct., 327, 117684. https://doi.org/10.1016/j.compstruct.2023.117684.
  16. Luo, W., Li, H., Zhou, Y. and Zhou, H. (2020), "Seismic performance of lead-filled steel tube damper: Laboratory test, parameter identification and application", Eng. Struct., 219, 110764. https://doi.org/10.1016/j.engstruct.2020.110764.
  17. Nian, Y., Wan, S., Li, M. and Su, Q. (2020), "Crashworthiness design of self-similar graded honeycomb-filled composite circular structures", Constr. Build. Mater., 233, 117344. https://doi.org/10.1016/j.conbuildmat.2019.117344.
  18. Nian, Y., Wan, S., Zhou, P., Wang, X., Santiago, R. and Li, M. (2021), "Energy absorption characteristics of functionally graded polymer-based lattice structures filled aluminum tubes under transverse impact loading", Mater. Des., 209, 110011. https://doi.org/10.1016/j.matdes.2021.110011.
  19. Padmaja, M., Murty, V.V.V.S. and Rao, N.R. (2021), "Quasi static axial compression of empty and PU foam filled circular aluminium and light gauge square steel tubes", Mater. Today: Proc., 43, 2342-2347. https://doi.org/10.1016/j.matpr.2021.01.680.
  20. Paul, A. and Ramamurty, U. (2000), "Strain rate sensitivity of a closed-cell aluminum foam", Mater. Sci. Eng.: A, 281(1-2), 1-7. https://doi.org/10.1016/S0921-5093(99)00750-9.
  21. Santosa, S. and Wierzbicki, T. (1998), "Crash behavior of box columns filled with aluminum honeycomb or foam", Comput. Struct., 68(4), 343-367. https://doi.org/10.1016/S0045-7949(98)00067-4.
  22. Santosa, S.P., Wierzbicki, T., Hanssen, A.G. and Langseth, M. (2000), "Experimental and numerical studies of foam-filled sections", Int. J. Impact Eng., 24(5), 509-534. https://doi.org/10.1016/S0734-743X(99)00036-6.
  23. Shekarchi, M., Yekrangnia, M., Biniaz, A. and Raftery, G.M. (2021), "Effect of elevated temperatures on the compressive behavior of timber filled steel and pultruded GFRP tubes", Compos. Struct., 271, 114135. https://doi.org/10.1016/j.compstruct.2021.114135.
  24. Singace, A.A. (2000), "Collapse behaviour of plastic tubes filled with wood sawdust", Thin Wall. Struct., 37(2), 163-187. https://doi.org/10.1016/S0263-8231(00)00012-4.
  25. Su, M., Wang, H. and Hao, H. (2019), "Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes", Compos. Struct., 226, 111197. https://doi.org/10.1016/j.compstruct.2019.111197.
  26. Sun, G., Wang, Z., Yu, H., Gong, Z. and Li, Q. (2019), "Experimental and numerical investigation into the crashworthiness of metal-foam-composite hybrid structures", Compos. Struct., 209, 535-547. https://doi.org/10.1016/j.compstruct.2018.10.051.
  27. Wan, M., Hu, D., Zhang, H. and Zhang, Z. (2024), "Energy absorption characteristics of TPMS-filled square tubes under quasi-static axial crushing", Thin Wall. Struct., 199, 111811. https://doi.org/10.1016/j.tws.2024.111811.
  28. Wang, J., Liu, A., Ao, Q., Wu, C., Ma, J. and Cao, P. (2023), "Energy absorption characteristics and preparation of porous titanium with high porosity", Mater. Today Commun., 34, 105003. https://doi.org/10.1016/j.mtcomm.2022.105003.
  29. Wang, Y., Zhang, B., Lu, J., Xue, B. and Zhai, X. (2020), "Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates", Eng. Struct., 211, 110404. https://doi.org/10.1016/j.engstruct.2020.110404.
  30. Wu, F., Liu, T., Xiao, X., Zhang, Z. and Hou, J. (2019), "Static and dynamic crushing of novel porous crochet-sintered metal and its filled composite tube", Compos. Struct., 209, 830-843. https://doi.org/10.1016/j.compstruct.2018.11.022.
  31. Xia, H., Sun, Q. and Wang, S. (2023), "Influence of strain rate effect on energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading", Case Stud. Constr. Mater., 18, e01761. https://doi.org/10.1016/j.cscm.2022.e01761.
  32. Xiao, Y., Wu, Q.W., Liu, Y., Wang, Y.J., Long, H. and Hu, H.L. (2024), "Optimization design of crashworthiness of polyurethane foam filled origami thin wall square tube based on a surrogate model", Struct., 65, 106713. https://doi.org/10.1016/j.istruc.2024.106713.
  33. Xue, Y., Mu, J., Huang, Y., Zhou, L. and Shi, Z. (2021), "Compressive mechanical properties of ex-situ auxetic composite-filled tubes", J. Mater. Res. Technol., 14, 1644-1654. https://doi.org/10.1016/j.jmrt.2021.07.061.
  34. Zarei, H. and Kroger, M. (2008), "Optimum honeycomb filled crash absorber design", Mater. Des., 29(1), 193-204. https://doi.org/10.1016/j.matdes.2006.10.013.
  35. Zhang, Y., Xu, X., Liu, S., Chen, T. and Hu, Z. (2018), "Crashworthiness design for bi-graded composite circular structures", Constr. Build. Mater., 168, 633-649. https://doi.org/10.1016/j.conbuildmat.2018.02.159.
  36. Zhang, Y., Xu, X., Wang, J., Chen, T. and Wang, C.H. (2018), "Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load", Int. J. Mech. Sci., 140, 407-431. https://doi.org/10.1016/j.ijmecsci.2018.03.015.
  37. Zhao, C., Chen, Q., Zhong, X., Zhang, T. and Chen, Z. (2021), "Feasibility study of buckling-restrained braces with PM-35 steel core", Struct. Eng. Mech., 79(2), 199-209. https://doi.org/10.12989/sem.2021.79.2.199.
  38. Zhao, C., Li, Q., Zhong, X. and Zhang, T. (2021), "Experimental study on basic mechanical properties of porous metal-concrete", Constr. Build. Mater., 304, 124663. https://doi.org/10.1016/j.conbuildmat.2021.124663.
  39. Zhao, C., Shi, Z. and Zhong, X. (2021), "A proposal for an approach for meso scale modeling for concrete based on rigid body spring model", Comput. Concrete, 27(3), 283-295. https://doi.org/10.12989/cac.2021.27.3.283.