DOI QR코드

DOI QR Code

Blasting resistance of curved sandwich composite concrete bunkers

  • Mahmudul Hasan (Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak) ;
  • Ahmad B.H. Kueh (Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak)
  • Received : 2023.09.29
  • Accepted : 2024.06.25
  • Published : 2024.07.10

Abstract

Improving the blast resistance of structural establishments has become an imperative engineering commitment to prevent property damage and fatalities in terrorist incidents. This study investigates the effects of blast mass and stand-off distance on CFRP skin concrete core sandwich bunkers of varying thicknesses using ABAQUS/Explicit software with CONWEP functionality. The considered parameters include TNT masses of 1, 10, and 25 kg and stand-off distances of 0.1, 1, 2, and 2.5 meters on structures with 200, 250, and 500 mm core thicknesses. The study finds that there exists a declining response corresponding to the blasting mass reduction coupled with increases in the stand-off distance and core thickness. The 500 mm thick bunker sustains less damage compared to those with 200 mm and 250 mm core thicknesses. The sandwich configuration remains structurally advantageous vs. those without skins. The sandwich bunker with a 500 mm thick concrete core gives the best performance against the 10 kg TNT blast load with a 1 m standoff distance exhibiting a 22.8% reduction in damage vs. that without skins. Mathematical expressions are then formulated for predicting maximum von Mises stress, principal stress, and displacement of sandwich bunkers as functions of TNT masses, stand-off distances, and core thicknesses.

Keywords

Acknowledgement

The authors thank Universiti Malaysia Sarawak for VC High Impact Research Grant 2.0 (VC HIRG2.0) under the grant code: UNI/F02/VC-HIRG-2/86080/2023.

References

  1. Abo Sabah, S.H., Kueh, A.B.H. and Al-Fasih, M.Y. (2017), "Comparative low-velocity impact behavior of bio-inspired and conventional sandwich composite beams", Compos. Sci. Technol., 149, 64-74. https://doi.org/10.1016/j.compscitech.2017.06.014.
  2. Abo Sabah, S.H., Kueh, A.B.H. and Al-Fasih, M.Y. (2018), "Bio-inspired vs. conventional sandwich beams: A low-velocity repeated impact behavior exploration", Constr. Build. Mater., 169, 193-204. https://doi.org/10.1016/j.conbuildmat.2018.02.201.
  3. Abo Sabah, S.H., Kueh, A.B.H. and Bunnori, N.M. (2019), "Failure mode maps of bio-inspired sandwich beams under repeated low-velocity impact", Compos. Sci. Technol., 182, 107785. https://doi.org/10.1016/j.compscitech.2019.107785.
  4. Al-Fasih, M.Y., Kueh, A.B.H. and W. Ibrahim, M.H. (2020a), "Failure behavior of sandwich honeycomb composite beam containing crack at the skin", PLoS One, 15(2), e0227895. https://doi.org/10.1371/journal.pone.0227895.
  5. Al-Fasih, M.Y., Kueh, A.B.H. and Ibrahim, M.H.W. (2020b), "Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins", Steel Compos. Struct., 34(2), 299-308. https://doi.org/10.12989/scs.2020.34.2.299.
  6. Amran, M., Alyousef, R., Rashid, R.S.M., Alabduljabbar, H. and Hung, C.C. (2018), "Properties and applications of FRP in strengthening RC structures: A review", Struct., 16, 208-238. https://doi.org/10.1016/j.istruc.2018.09.008.
  7. Benameur, I., Beldjelili, Y. and Tounsi, A. (2023), "Analytical and finite element method for the bending analysis of the thick porous functionally graded sandwich plate including thickness stretching effect", Struct. Eng. Mech., 85(5), 593-605. https://doi.org/10.12989/sem.2023.85.5.593.
  8. Buchan, P.A. and Chen, J.F. (2007), "Blast resistance of FRP composites and polymer strengthened concrete and masonry structures-A state-of-the-art review", Compos. Part B Eng., 38(5-6), 509-522. https://doi.org/10.1016/j.compositesb.2006.07.009.
  9. DipikaKhandelwal, D.H. and Gandhe, G.R. (2020), "Dynamic analysis of military bunker subjected to blast", Int. Res. J. Eng. Technol., 07(07), 808-814.
  10. Drahman, S.H., Kueh, A.B.H. and Zainal Abidin, A.R. (2024), "Simplified surface wettability determination defined by new interfacial interaction compatibility expressions for composites", J. Adhes. Sci. Technol., 38(4), 533-549. https://doi.org/10.1080/01694243.2023.2240588.
  11. Foglar, M. and Kovar, M. (2013), "Conclusions from experimental testing of blast resistance of FRC and RC bridge decks", Int. J. Impact Eng., 59, 18-28. https://doi.org/10.1016/j.ijimpeng.2013.03.008.
  12. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2021), "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete", Eng. Struct., 244, 112790. https://doi.org/10.1016/j.engstruct.2021.112790.
  13. Ghamry Metwally, K., Zaghw, A.I., Metwally, K.G. and Emarah, A.M. (2017), "Nonlinear dynamic finite element analysis of hardened aircraft shelter subjected to blast load", New York Sci. J., 10(10), 59-67.
  14. Grygorowicz, M., Magnucki, K. and Malinowski, M. (2015), "Elastic buckling of a sandwich beam with variable mechanical properties of the core", Thin Wall. Struct., 87, 127-132. https://doi.org/10.1016/j.tws.2014.11.014.
  15. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M.S.B. and Karimzade, K. (2017), "Simplified damage plasticity model for concrete", Struct. Eng. Int., 27(1), 68-78. https://doi.org/10.2749/101686616X1081.
  16. Hao, Y. and Hao, H. (2014), "Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings", Eng. Struct., 73, 24-38. https://doi.org/10.1016/j.engstruct.2014.04.042.
  17. Ibrahim, S.K. and Rad, M.M. (2023), "Limited optimal plastic behavior of RC beams strengthened by carbon fiber polymers using reliability-based design", Polym., 15(3), 569. https://doi.org/10.3390/polym15030569.
  18. Jahami, A., Temsah, Y. and Khatib, J. (2019), "The efficiency of using CFRP as a strengthening technique for reinforced concrete beams subjected to blast loading", Int. J. Adv. Struct. Eng., 11, 411-420. https://doi.org/10.1007/s40091-019-00242-w.
  19. Jing, L., Liu, K., Su, X. and Guo, X. (2021), "Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading", Thin Wall. Struct., 161, 107445. https://doi.org/10.1016/j.tws.2021.107445.
  20. Kam, C.Z., Kueh, A.B.H., Low, K.B., Wang, X.Y. and Shek, P.N. (2014), "Uniaxial compressive stability of laminated composite plate with localised interfacial degeneration", Mater. Res. Innov., 18(6), 109-116. https://doi.org/10.1179/1432891714Z.000000000940.
  21. Kueh, A.B.H., Sabah, S.H.A., Qader, D.N., Drahman, S.H. and Amran, M. (2023), "Single and repetitive low-velocity impact responses of sandwich composite structures with different skin and core considerations: A review", Case Stud. Constr. Mater., 18, e01908. https://doi.org/10.1016/j.cscm.2023.e01908.
  22. Kueh, A.B.H. (2012), "Fitting-free hyperelastic strain energy formulation for triaxial weave fabric composites", Mech. Mater., 47, 11-23. https://doi.org/10.1016/j.mechmat.2012.01.001.
  23. Kueh, A.B.H. (2013), "Buckling of sandwich columns reinforced by triaxial weave fabric composite skin-sheets", Int. J. Mech. Sci., 66, 45-54. https://doi.org/10.1016/j.ijmecsci.2012.10.007.
  24. Kueh, A.B.H. (2014), "Size-influenced mechanical isotropy of singly-plied triaxially woven fabric composites", Compos. Part A Appl. Sci. Manuf., 57, 76-87. https://doi.org/10.1016/j.compositesa.2013.11.005.
  25. Kueh, A.B.H. (2023), "Thermally-induced responses of triaxially woven fabric composites", Heliyon, 9(7), e17631. https://doi.org/10.1016/j.heliyon.2023.e17631.
  26. Kueh, A.B.H., Seh, W.W., Shek, P.N., Tan, C.S. and Tahir, M.M. (2011), "Maximum local thermal effects carpet plot for symmetric laminated composite plates", Adv. Mater. Res., 250, 3748-3751. https://doi.org/10.4028/www.scientific.net/AMR.250-253.3748.
  27. Kueh, A.B.H. and Siaw, Y.Y. (2021), "Impact resistance of bio-inspired sandwich beam with side-arched and honeycomb dual-core", Compos. Struct., 275, 114439. https://doi.org/10.1016/j.compstruct.2021.114439.
  28. Kueh, A.B.H., Tan, J.H., Abu Hassan, S. and Wahit, M.U. (2023), "Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core", Struct. Eng. Mech., 85(6), 755-764. https://doi.org/10.12989/sem.2023.85.6.755.
  29. Kueh, A.B.H., Razali, A.W., Lee, Y.Y., Hamdan, S., Yakub, I. and Suhaili, N. (2023), "Acoustical and mechanical characteristics of mortars with pineapple leaf fiber and silica aerogel infills-measurement and modeling", Mater. Today Commun., 35, 105540. https://doi.org/10.1016/j.mtcomm.2023.105540.
  30. Kueh, A.B.H. (2023), "Resonant frequency of coronavirus: The tensegrity approach", Alex. Eng. J., 79, 252-258. https://doi.org/10.1016/j.aej.2023.08.024.
  31. Kumar, V., Kartik, K.V. and Iqbal, M.A. (2020), "Experimental and numerical investigation of reinforced concrete slabs under blast loading", Eng. Struct., 206, 110125. https://doi.org/10.1016/j.engstruct.2019.110125.
  32. Li, Y., Ren, X., Zhang, X., Chen, Y., Zhao, T. and Fang, D. (2021), "Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading", Compos. Struct., 258, 113317. https://doi.org/10.1016/j.compstruct.2020.113317.
  33. Lin, X., Zhang, Y.X. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Des., 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069.
  34. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., ... & Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  35. Mohammadzadeh, B., Kang, J. and Im, S. (2020), "Blast loaded plates: Simplified analytical nonlinear dynamic approach", Struct., 28, 2034-2046. https://doi.org/10.1016/j.istruc.2020.10.043.
  36. Mortezaei, A., Ronagh, H.R. and Kheyroddin, A. (2010), "Seismic evaluation of FRP strengthened RC buildings subjected to near-fault ground motions having fling step", Compos. Struct., 92(5), 1200-1211. https://doi.org/10.1016/j.compstruct.2009.10.017.
  37. Nikmatin, S., Syafiuddin, A., Kueh, A.B.H. and Maddu, A. (2017), "Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles", J. Appl. Res. Technol., 15(4), 386-395. https://doi.org/10.1016/j.jart.2017.03.008.
  38. Nikmatin, S., Syafiuddin, A., Kueh, A.B.H. and Purwanto, Y.A. (2015), "Effects of nanoparticle filler on thermo-physical properties of rattan powder-filled polypropylene composites", J. Teknol., 77(16), 181-187. https://doi.org/10.11113/jt.v77.6415.
  39. O'Higgins, R.M., McCarthy, M.A. and McCarthy, C.T. (2008), "Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials", Compos. Sci. Technol., 68(13), 2770-2778. https://doi.org/10.1016/j.compscitech.2008.06.003.
  40. Rashad, M., Wahab, M.M.A. and Yang, T.Y. (2019), "Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads", Steel Compos. Struct., 30(3), 217-230. https://doi.org/10.12989/scs.2019.30.3.217.
  41. Reifarth, C., Castedo, R., Santos, A. P., Chiquito, M., Lopez, L. M., Perez-Caldentey, A., ... & Alanon, A. (2021), "Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads", Int. J. Impact Eng., 156, 103939. https://doi.org/10.1016/j.ijimpeng.2021.103939.
  42. Shakil, U.A. and Hassan, S.B.A. (2020), "Behavior and properties of tin slag polyester polymer concrete confined with FRP composites under compression", J. Mech. Behav. Mater., 29(1), 44-56. https://doi.org/10.1515/jmbm-2020-0005.
  43. Soufeiani, L., Ghadyani, G., Kueh, A.B.H. and Nguyen, K.T.Q. (2017), "The effect of laminate stacking sequence and fiber orientation on the dynamic response of FRP composite slabs", J. Build. Eng., 13, 41-52. https://doi.org/10.1016/j.jobe.2017.07.004.
  44. Tay, L.T., Lee, Y.Y., Kueh, A.B.H. and Lee, Y.H. (2024), "Mechanical characteristics of silica aerogel mortar and sandwiched mortar with silica aerogel mat core", J. Mater. Civil Eng., 36(1), 04023516. https://doi.org/10.1061/jmcee7.mteng-15207.
  45. Tursunkululy, T., Zhangabay, N., Suleimenov, U., Abshenov, K., Utelbayeva, A., Moldagaliyev, A., ... & Kozlov, P. (2023), "Analysis of strength and eigenfrequencies of a steel vertical cylindrical tank without liquid, reinforced by a plain composite thread", Case Stud. Constr. Mater., 18, e02019. https://doi.org/10.1016/j.cscm.2023.e02019.
  46. Valente, M., Sambucci, M., Sibai, A. and Iannone, A. (2022), "Novel cement-based sandwich composites engineered with ground waste tire rubber: Design, production, and preliminary results", Mater. Today Sustain., 20, 100247. https://doi.org/10.1016/j.mtsust.2022.100247.
  47. Wang, H., Chen, H., Zhou, Y., Wang, P., Zhou, J. and Fan, H. (2019), "Blast responses and damage evaluation of CFRP tubular arches", Constr. Build. Mater., 196, 233-244. https://doi.org/10.1016/j.conbuildmat.2018.11.097.
  48. Yin, H., Teo, W. and Shirai, K. (2017), "Experimental investigation on the behaviour of reinforced concrete slabs strengthened with ultra-high performance concrete", Constr. Build. Mater., 155, 463-474. https://doi.org/10.1016/j.conbuildmat.2017.08.077.
  49. Yu, T., Lin, G. and Zhang, S.S. (2016), "Compressive behavior of FRP-confined concrete-encased steel columns", Compos. Struct., 154, 493-506. https://doi.org/10.1016/j.compstruct.2016.07.027.
  50. Yusuf Shaikh, A. and Shaikh, S. (2021), "Review paper on dynamic analysis of military bunkers subjected to air blast", IJASRET Def. J., 6(6), 105-110. https://doi.org/10.51397/OAIJSE06.2021.0018.
  51. Zhang, J., Ye, Y. and Qin, Q. (2019), "On dynamic response of rectangular sandwich plates with fibre-metal laminate face-sheets under blast loading", Thin Wall. Struct., 144, 106288. https://doi.org/10.1016/j.tws.2019.106288.
  52. Zhao, C., Ye, X., He, K. and Gautam, A. (2020), "Numerical study and theoretical analysis on blast resistance of fabricated concrete slab", J. Build. Eng., 32, 101760. https://doi.org/10.1016/j.jobe.2020.101760.
  53. Zhou, X. and Jing, L. (2020), "Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading", Thin Wall. Struct., 157, 107141. https://doi.org/10.1016/j.tws.2020.107141.