과제정보
The authors would like to acknowledge the financial support from the Fundamental Research Funds for the Central Universities (20720220070).
참고문헌
- Abdelmaksoud, A.M., Balomenos, G.P. and Becker, T.C. (2022), "Fuzzy-Logistic models for incorporating epistemic uncertainty in bridge management decisions", ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng., 8(3), 04022025. https://doi.org/10.1061/AJRUA6.0001247.
- Ali, G., Elsayegh, A., Assaad, R., El-Adaway, I.H. and Abotaleb, I.S. (2019), "Artificial neural network model for bridge deterioration and assessment", Missouri University of Science and Technology.
- Axon, E.G., Murray, L.T. and Rucker, R.M. (1969), "A study of deterioration in concrete bridge decks", Highway Research Record, 268.
- Busa, G., Cassella, M., Gazda, W. and Horn, R. (1985), "A national bridge deterioration model (Staff Study No. SS-42-U5-26)", Transportation Systems Center, Cambridge, MA, USA.
- Callow, D., Lee, J., Blumenstein, M., Guan, H. and Loo, Y.C. (2013), "Development of hybrid optimisation method for Artificial Intelligence based bridge deterioration model-Feasibility study", Auto. Construct., 31, 83-91. https://doi.org/10.1016/j.autcon.2012.11.016.
- Chakrabarty, D. (2013), "Curve fitting: Step-wise least squares method", Journal Impact Factor, 0-489.
- Chang, M., Maguire, M. and Sun, Y. (2017), "Framework for mitigating human bias in selection of explanatory variables for bridge deterioration modeling", J. Infrastr. Syst., 23(3), 04017002. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000352.
- Choudhury, J.R. and Hasnat, A. (2015), "Bridge collapses around the world: Causes and mechanisms", IABSE-JSCE Joint Conference on Advances in Bridge Engineering-III, Dhaka, Bangladesh.
- Choi, Y., Lee, J. and Kong, J. (2020), "Performance degradation model for concrete deck of bridge using pseudo-LSTM", Sustainab., 12(9), 3848. https://doi.org/10.3390/su12093848.
- Crumpton, C.F., Pattengill, M.G. and Badgley, W.A. (1969). "Bridge deck deterioration study, part 8: special study of blue rapids bridge deck", State Highway Commission of Kansas, Planning and Development Department, Research Division.
- Ghonima, O., Anderson, J.C., Schumacher, T. and Unnikrishnan, A. (2020), "Performance of US concrete highway bridge decks characterized by random parameters binary logistic regression", ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng., 6(1), 04019025. https://doi.org/10.1061/AJRUA6.0001031.
- Guest, G., Zhang, J., Atadero, R. and Shirkhani, H. (2020), "Incorporating the effects of climate change into bridge deterioration modeling: the case of slab-on-girder highway bridge deck designs across Canada", J. Mater. Civil Eng., 32(7), 04020175. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003245.
- Guo, X., Chen, Z., Sun, L. and Ji, W. (2017). "Deterioration analysis and forecasting model of urban bridges", 17th COTA International Conference of Transportation Professionals, Reston, VA, July.
- Hallinan Jr, A.J. (1993), "A review of the Weibull distribution", J. Qual. Technol., 25(2), 85-93. https://doi.org/10.1080/00224065.1993.11979431.
- Hasan, M.S. (2015), "Deterioration prediction of concrete bridge components using artificial intelligence and stochastic methods", RMIT University.
- Huang, R.Y., Mao, I.S. and Lee, H.K. (2010), "Exploring the deterioration factors of RC bridge decks: a rough set approach", Comput.-Aid. Civil Infrastr. Eng., 25(7), 517-529. https://doi.org/10.1111/j.14678667.2010.00665.x.
- Huang, Y.H. (2010), "Artificial neural network model of bridge deterioration", J. Perform. Constr. Facil., 24(6), 597-602. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000124.
- Ilbeigi, M. and Ebrahimi Meimand, M. (2020), "Statistical forecasting of bridge deterioration conditions", J. Perform. Constr. Facil., 34(1), 04019104. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001347.
- Jiang, Y., Saito, M. and Sinha, K.C. (1988), Bridge Performance Prediction Model using the Markov Chain.
- Kwon, T.H., Kim, J., Park, K.T. and Jung, K.S. (2022), "Long short-term memory-based methodology for predicting carbonation models of reinforced concrete slab bridges: Case Study in South Korea", Appl. Sci., 12(23), 12470. https://doi.org/10.3390/app122312470.
- Lee, J., Guan, H., Loo, Y.C. and Blumenstein, M. (2014), "Development of a long-term bridge element performance model using Elman Neural Networks", J. Infrastr. Syst., 20(3), 04014013. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000197.
- Leivo, M., Sistonen, E., Al-Neshawy, F., Piironen, J., Kuosa, H., Holt, E., Koskinen, P. and Nordqvist, C. (2011), "Effect of interacted deterioration parameters on service life of concrete structures in cold environments", Laboratory Test Result 2009-2011, V. T. R. C. o., Finland.
- Li, L., Li, F., Chen, Z. and Sun, L. (2016), "Use of Markov chain model based on actual repair status to predict bridge deterioration in Shanghai, China", Transp. Res. Record, 2550(1), 106-114. https://doi.org/10.3141/2550-14.
- Li, Y., Dong, Y., Frangopol, D.M. and Gautam, D. (2020), "Long-term resilience and loss assessment of highway bridges under multiple natural hazards", Struct. Infrastr. Eng., 16(4), 626-641. https://doi.org/10.1080/15732479.2019.1699936.
- Lim, S. and Chi, S. (2019), "Xgboost application on bridge management systems for proactive damage estimation", Adv. Eng. Inform., 41, 100922. https://doi.org/10.1016/j.aei.2019.100922.
- Liu, K. and El-Gohary, N. (2022), "Deep learning-based analytics of multisource heterogeneous bridge data for enhanced data-driven bridge deterioration prediction", J. Comput. Civil Eng., 36(5), 04022023. https://doi.org/10.1061/(ASCE)CP.1943-5487.0001018.
- Lu, P., Pei, S. and Tolliver, D. (2016), "Regression model evaluation for highway bridge component deterioration using national bridge inventory data", J. Transp. Res. Forum, 55(1), 5-16. https://doi.org/10.22004/ag.econ.262649.
- Ma, Y., Zhang, J., Wang, L. and Liu, Y. (2013), "Probabilistic prediction with Bayesian updating for strength degradation of RC bridge beams", Struct. Saf., 44, 102-109. https://doi.org/10.1016/j.strusafe.2013.07.006.
- Markovsky, I. and Van Huffel, S. (2007), "Overview of total least-squares methods", Signal Proc., 87(10), 2283-2302. https://doi.org/10.1016/j.sigpro.2007.04.004.
- Miao, P. and Yokota, H. (2022), "Comparison of Markov chain and recurrent neural network in predicting bridge deterioration considering various factors", Struct. Infrastr. Eng., 20(2), 250-262. https://doi.org/10.1080/15732479.2022.2087691.
- Miao, P., Yokota, H. and Zhang, Y. (2023), "Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network", Struct. Infrastr. Eng., 19(4), 475-489. https://doi.org/10.1080/15732479.2021.1951778.
- Morcous, G. (2000), "Case-based reasoning for modeling bridge deterioration", Concordia University.
- Pan, N.F. (2007), "Forecasting bridge deck conditions using fuzzy regression analysis", J. Chin. Inst. Eng., 30(4), 593-603. https://doi.org/10.1080/02533839.2007.9671288.
- Papadakis, V.G. (2013), "Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration", Adv. Concrete Constr., 1(3), 201. https://doi.org/10.12989/acc2013.1.3.201.
- Riedmiller, M. and Braun, H. (1993), "A direct adaptive method for faster backpropagation learning: The RPROP algorithm", IEEE International Conference on Neural Networks, 586-591. https://doi.org/10.1109/ICNN.1993.298623.
- Santamaria, M., Fernandes, J. and Matos, J.C. (2019), "Overview on performance predictive models-Application to Bridge Management Systems", IABSE Symposium, 1222-1229.
- Sobanjo, J., Mtenga, P. and Rambo-Roddenberry, M. (2010), "Reliability-based modeling of bridge deterioration hazards", J. Bridge Eng., 15(6), 671-683. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000074.
- Srikanth, I. and Arockiasamy, M. (2020), "Deterioration models for prediction of remaining useful life of timber and concrete bridges: A review", J. Traffic Transp. Eng. (English Ed.), 7(2), 152-173. https://doi.org/10.1016/j.jtte.2019.09.005.
- Srikanth, I. and Arockiasamy, M. (2022), "Development of non-parametric deterioration models for risk and reliability assessments of concrete and timber bridges", J. Perform. Constr. Facil., 36(1), 04021114. https://doi.org/10.1061/(ASCE)CF.19435509.0001692.
- Vesikari, E., Kuosa, H., Piironen, J. and Ferreira, R.M. (2012), "Modelling synergistic effects of carbonation/chloride penetration and frost attack for service life design of concrete bridges", 6th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2012, 3927-3933.
- Wang, F., Lee, C.C.B. and Gharaibeh, N.G. (2022), "Network-level bridge deterioration prediction models that consider the effect of maintenance and rehabilitation", J. Infrastr. Syst., 28(1), 05021009. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000662.
- Wellalage, N.K.W., Zhang, T. and Dwight, R. (2015), "Calibrating Markov chain-based deterioration models for predicting future conditions of railway bridge elements", J. Bridge Eng., 20(2), 04014060. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000640.
- Zhu, J. and Wang, Y. (2021), "Feature selection and deep learning for deterioration prediction of the bridges", J. Perform. Constr. Facil., 35(6), 04021078. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001653.