DOI QR코드

DOI QR Code

Seismic train-bridge coupled system sensitivity analysis considering random aftershock intensity and residual track deformation

  • Jincheng Tan (School of Civil Engineering, Central South University) ;
  • Manman Chen (Department of Civil Engineering, Guangxi Polytechnic of Construction) ;
  • Xiang Liu (School of Civil Engineering, Central South University) ;
  • Han Zhao (School of Civil Engineering, Central South University) ;
  • Lizhong Jiang (School of Civil Engineering, Central South University) ;
  • Peidong Guo (School of Civil Engineering, Central South University) ;
  • Wangbao Zhou (School of Civil Engineering, Central South University) ;
  • Ping Xiang (School of Civil Engineering, Central South University)
  • Received : 2022.05.02
  • Accepted : 2024.05.07
  • Published : 2024.07.10

Abstract

After the mainshock, whether the train can be allowed to pass the bridges plays an important role in ensuring the transport of supplies and rescue works for example, in the "12 May" earthquake in China, after evaluation, the bridge was still used for transportation in rescue at a very slow speed, engineers usually evaluate whether the train can pass the bridge safely based on the experience, lacks sufficient calculation basis and does not fully consider the risk caused by aftershocks. To address this issue, this paper comprehensively considers the randomness of track irregularity, the randomness of aftershock intensity and other multiple random sources in train-bridge interaction system (TBIS). The sensitivity of train to various random parameters after earthquake is analyzed from the perspective of probability, the most sensitive random variable in this paper is PGA of aftershocks, both for bridge and trailer car, With the increase of epicentral distance, the sensitivity of PGA will decrease, and correspondingly, for trailer car, the sensitivity of other random variables will increase, research in this paper provides a basis for the subsequent random analysis of post-earthquake driving safety.

Keywords

Acknowledgement

This work was funded by the Henan Province Science and Technology Key Research Project (242102521034), the 2023 Hunan Province Transportation Science and Technology Progress and Innovation Project (202305), Key Scientific Research Project of Hunan Provincial Department of Education, Project (21A0073) and Taishan Program (tsqn202306278).

References

  1. Changqing, L., Junping, J., Lizhong, J. and Yang, T. (2016), "Theory and implementation of a two-step unconditionally stable explicit integration algorithm for vibration analysis of structures", Shock Vib., 2016(1), 2831206. https://doi.org/10.1155/2016/2831206.
  2. Cheng, Y.C., Chen, C.H. and Hsu, C.T. (2017), "Derailment and dynamic analysis of tilting railway vehicles moving over irregular tracks under environment forces", Int. J. Struct. Stab. Dyn., 17(9), 1750098. https://doi.org/10.1142/S0219455417500985.
  3. Der Kiureghian, A. and Liu, P.L. (1986), "Structural reliability under incomplete probability information", J. Eng. Mech., 112(1), 85-104. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(85).
  4. Fan, W.L., Wei, J.H., Ang, A.H.S. and Li, Z.L. (2016), "Adaptive estimation of statistical moments of the responses of random systems", Prob. Eng. Mech., 43, 50-67. https://doi.org/10.1016/j.probengmech.2015.10.005.
  5. Goda, K. and Taylor, C.A. (2012), "Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes", Earthq. Eng. Struct. Dyn., 41(15), 2311-2330. https://doi.org/10.1002/eqe.2188.
  6. Guo, Z. and Ogata, Y. (1997), "Statistical relations between the parameters of aftershocks in time, space, and magnitude", J. Geophys. Res.: Solid Earth, 102(B2), 2857-2873. https://doi.org/10.1029/96jb02946.
  7. Jiang, L.Z., Liu, C., Peng, L.X., Yan, J.W. and Xiang, P. (2021), "Dynamic analysis of multi-layer beam structure of rail track system under a moving load based on mode decomposition", J. Vib. Eng. Technol., 9(7), 1463-1481. https://doi.org/10.1007/s42417-021-00308-8.
  8. Jiang, L.Z., Liu, X., Xiang, P. and Zhou, W.B. (2019), "Train-bridge system dynamics analysis with uncertain parameters based on new point estimate method", Eng. Struct., 199, 109454. https://doi.org/10.1016/j.engstruct.2019.109454.
  9. Jiang, L.Z., Yu, J., Zhou, W.B., Yan, W.J., Lai, Z.P. and Feng, Y.L. (2020), "Applicability analysis of high-speed railway system under the action of near-fault ground motion", Soil Dyn. Earthq. Eng., 139, 106289. https://doi.org/10.1016/j.soildyn.2020.106289.
  10. Kalker, J.J. (1967), "On the rolling contact of two elastic bodies in the presence of dry friction".
  11. Lai, Z., Kang, X., Jiang, L., Zhou, W., Feng, Y., Zhang, Y., ... & Nie, L. (2020), "Earthquake influence on the rail irregularity on high-speed railway bridge", Shock Vib., 2020(1), 4315304. https://doi.org/10.1155/2020/4315304.
  12. Lin, J., Zhang, W. and Williams, F.W. (1994), "Pseudo-excitation algorithm for nonstationary random seismic responses", Eng. Struct., 16(4), 270-276. https://doi.org/10.1016/0141-0296(94)90067-1.
  13. Liu, P.L. and Der Kiureghian, A. (1986), "Multivariate distribution models with prescribed marginals and covariances", Prob. Eng. Mech., 1(2), 105-112. https://doi.org/10.1016/0266-8920(86)90033-0.
  14. Liu, X., Jiang, L., Xiang, P., Lai, Z., Zhang, Y. and Liu, L. (2022), "A stochastic finite element method for dynamic analysis of bridge structures under moving loads", Struct. Eng. Mech., 82(1), 31-40. https://doi.org/10.12989/sem.2022.82.1.031.
  15. Liu, X., Jiang, L.Z., Lai, Z.P., Xiang, P. and Chen, Y.J. (2020), "Sensitivity and dynamic analysis of train-bridge coupled system with multiple random factors", Eng. Struct., 221, 111083. https://doi.org/10.1016/j.engstruct.2020.111083.
  16. Liu, X., Jiang, L.Z., Xiang, P., Lai, Z.P., Feng, Y.L. and Cao, S.S. (2021), "Dynamic response limit of high-speed railway bridge under earthquake considering running safety performance of train", J. Central South Univ., 28(3), 968-980. https://doi.org/10.1007/s11771-021-4657-2.
  17. Liu, X., Xiang, P., Jiang, L.Z., Lai, Z.P., Zhou, T. and Chen, Y.J. (2020), "Stochastic analysis of train-bridge system using the Karhunen-Loeve expansion and the point estimate method", Int. J. Struct. Stab. Dyn., 20(2), 2050025. https://doi.org/10.1142/S021945542050025x.
  18. Mao, J.F., Yu, Z.W., Xiao, Y.J., Jin, C. and Bai, Y. (2016), "Random dynamic analysis of a train-bridge coupled system involving random system parameters based on probability density evolution method", Prob. Eng. Mech., 46, 48-61. https://doi.org/10.1016/j.probengmech.2016.08.003.
  19. Munoz, S., Aceituno, J.F., Urda, P. and Escalona, J.L. (2019), "Multibody model of railway vehicles with weakly coupled vertical and lateral dynamics", Mech. Syst. Signal Pr., 115, 570-592. https://doi.org/10.1016/j.ymssp.2018.06.019.
  20. Nanjo, K.Z., Enescu, B., Shcherbakov, R., Turcotte, D.L., Iwata, T. and Ogata, Y. (2007), "Decay of aftershock activity for Japanese earthquakes", J. Geophys. Res.-Solid Earth, 112(B8), https://doi.org/10.1029/2006jb004754.
  21. Nishimura, K., Terumichi, Y., Morimura, T. and Sogabe, K. (2007), "Development of vehicle dynamics simulation for safety analyses of rail vehicles on excited tracks", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 4806, 1827-1836. https://doi.org/10.1115/1.3007901.
  22. Pang, Y.T. and Wang, X.W. (2021), "Enhanced endurance-time-method (EETM) for efficient seismic fragility, risk and resilience assessment of structures", Soil Dyn. Earthq. Eng., 147, 106731. https://doi.org/10.1016/j.soildyn.2021.106731.
  23. Rocha, J.M., Henriques, A.A., Calcada, R. and Ronnquist, A. (2015), "Efficient methodology for the probabilistic safety assessment of high-speed railway bridges", Eng. Struct., 101, 138-149. https://doi.org/10.1016/j.engstruct.2015.07.020.
  24. Shcherbakov, R., Turcotte, D.L. and Rundle, J.B. (2005), "Aftershock statistics", Pure Appl. Geophys., 162(6-7), 1051-1076. https://doi.org/10.1007/s00024-004-2661-8.
  25. Utsu, T. and Ogata, Y. (1995), "The centenary of the Omori formula for a decay law of aftershock activity", J. Phys. Earth, 43(1), 1-33. https://doi.org/10.4294/jpe1952.43.1.
  26. Wang, G.X. (2001), "A new two-steps method for fitting ground motion attenuation relationship", Earthq. Eng. Eng. Vib., 20(01), 24-28. https://doi.org/10.13197/j.eeev.2001.01.004.
  27. Xia, C., Wang, K., Huang, J., Xia, H., Qi, L. and Wu, X. (2022), "Vibration analysis of train-bridge system with a damaged pier by flotilla collision and running safety of high-speed train", Struct. Eng. Mech., 81(1), 69-79. https://doi.org/10.12989/sem.2022.81.1.069.
  28. Xiang, P., Huang, W., Jiang, L.Z., Lu, D.G., Liu, X. and Zhang, Q. (2021), "Investigations on the influence of prestressed concrete creep on train-track-bridge system", Constr. Build. Mater., 293, 123504. https://doi.org/10.1016/j.conbuildmat.2021.123504.
  29. Xu, L. and Zhai, W. (2018), "A model for vehicle-track random interactions on effects of crosswinds and track irregularities", Veh. Syst. Dyn., 57(3), 444-469. https://doi.org/10.1080/00423114.2018.1469775.
  30. Xu, L. and Zhai, W.M. (2017), "Stochastic analysis model for vehicle-track coupled systems subject to earthquakes and track random irregularities", J. Sound Vib., 407, 209-225. https://doi.org/10.1016/j.jsv.2017.06.030.
  31. Xu, L., Zhai, W.M. and Gao, J.M. (2017), "A probabilistic model for track random irregularities in vehicle/track coupled dynamics", Appl. Math. Model., 51, 145-158. https://doi.org/10.1016/j.apm.2017.06.027.
  32. Xu, L., Zhai, W.M., Gao, J.M., Meacci, M. and Chen, X.M. (2017), "On effects of track random irregularities on random vibrations of vehicle-track interactions", Prob. Eng. Mech., 50, 25-35. https://doi.org/10.1016/j.probengmech.2017.10.002.
  33. Yang, Y.B., Yau, J., Yao, Z. and Wu, Y. (2004), Vehicle-bridge Interaction Dynamics: with Applications to High-Speed Railways, World Scientific.
  34. Yu, J., Jiang, L.Z., Zhou, W.B., Liu, X., Lai, Z.P. and Feng, Y.L. (2020), "Study on the dynamic response correction factor of a coupled high-speed train-track-bridge system under near-fault earthquakes", Mech. Bas. Des. Struct. Mach., 50(9), 3303-3321. https://doi.org/10.1080/15397734.2020.1803753.
  35. Yu, J., Jiang, L., Zhou, W., Liu, X., Nie, L., Zhang, Y., ... & Cao, S. (2021), "Running test on high-speed railway track-simply supported girder bridge systems under seismic action", Bull. Earthq. Eng., 19(9), 3779-3802. https://doi.org/10.1007/s10518-021-01125-w.
  36. Yu, J., Jiang, L.Z., Zhou, W.B., Lu, J.Y., Zhong, T.X. and Peng, K. (2021), "Study on the influence of trains on the seismic response of high-speed railway structure under lateral uncertain earthquakes", Bull. Earthq. Eng., 19(7), 2971-2992. https://doi.org/10.1007/s10518-021-01085-1.
  37. Yu, Z.W. and Mao, J.F. (2018), "A stochastic dynamic model of train-track-bridge coupled system based on probability density evolution method", Appl. Math. Model., 59, 205-232. https://doi.org/10.1016/j.apm.2018.01.038.
  38. Zeng, Q.Y. (2015), Lectures on Dymnamics of Structures, People's Communications Press, Beijing.
  39. Zeng, Q. and Dimitrakopoulos, E.G. (2018), "Vehicle-bridge interaction analysis modeling derailment during earthquakes", Nonlin. Dyn., 93(4), 2315-2337. https://doi.org/10.1007/s11071-018-4327-6.
  40. Zeng, Z.P., Zhao, Y.G., Xu, W.T., Yu, Z.W., Chen, L.K. and Lou, P. (2015), "Random vibration analysis of train-bridge under track irregularities and traveling seismic waves using train-slab track-bridge interaction model", Journal of Sound and Vibration, 342, 22-43. https://doi.org/10.1016/j.jsv.2015.01.004.
  41. Zhai, W., Yang, J., Li, Z. and Han, H. (2015), "Dynamics of high-speed train in crosswinds based on an air-train-track interaction model", Wind Struct, 20(2), 143-168. https://doi.org/10.12989/was.2015.20.2.143.
  42. Liu, S., Jiang, L., Zhou, W., Yu, J., Xiao, J. and Liao, X. (2024), "Study of post-earthquake train running performance considering earthquake-induced track irregularity", Veh. Syst. Dyn., 1-21. https://doi.org/10.1080/00423114.2024.2330441.
  43. Shao, Z., Xiang, P., Zhao, H., Zhang, P., Xie, X., Gan, L., ... & Liew, K.M. (2024), "A novel train-bridge interaction computational framework based on a meshless box girder model", Adv. Eng. Softw., 192, 103628. https://doi.org/10.1016/j.advengsoft.2024.103628.
  44. Tan, J., Xiang, P., Zhao, H., Yu, J., Ye, B. and Yang, D. (2022), "Stochastic analysis of train running safety on bridge with earthquake-induced irregularity under aftershock", Symmetry, 14(10), 1998. https://doi.org/10.3390/sym14101998.
  45. Xiang, P., Zhang, P., Zhao, H., Shao, Z. and Jiang, L. (2023), "Seismic response prediction of a train-bridge coupled system based on a LSTM neural network", Mech. Bas. Des. Struct. Mach., 1-23. https://doi.org/10.1080/15397734.2023.2260469.
  46. Yu, J., Jiang, L., Zhou, W., Liu, X. and Lai, Z. (2022), "Seismic-induced geometric irregularity of rail alignment under transverse random earthquake", J. Earthq. Eng., 27(3), 575-596. https://doi.org/10.1080/13632469.2022.2030437.
  47. Yu, J., Zhou, W. and Jiang, L. (2022), "Response spectra of fitted post-seismic residual track irregularity for high-speed railway", Earthq. Eng. Struct. Dyn., 52(2), 350-369. https://doi.org/10.1002/eqe.3763.
  48. Zhang, P., Zhao, H., Shao, Z., Jiang, L., Hu, H., Zeng, Y. and Xiang, P. (2024), "A rapid analysis framework for seismic response prediction and running safety assessment of train-bridge coupled systems", Soil Dyn. Earthq. Eng., 177, 108386. https://doi.org/10.1016/j.soildyn.2023.108386.
  49. Zhang, X., Xie, X., Wang, L., Luo, G., Cui, H., Wu, H., ... & Xiang, P. (2024), "Experimental study on CRTS III Ballastless track based on quasi-distributed fiber bragg grating monitoring", Iran. J. Sci. Technol., Trans. Civil Eng., 1-15. https://doi.org/10.1007/s40996-023-01319-z.
  50. Zhang, X., Zheng, Z., Wang, L., Cui, H., Xie, X., Wu, H., ... & Xiang, P. (2024), "A Quasi-Distributed optic fiber sensing approach for interlayer performance analysis of ballastless Track-Type II plate", Opt. Laser Technol., 170, 110237. https://doi.org/10.1016/j.optlastec.2023.110237.
  51. Zhao, H., Gao, L., Wei, B., Tan, J., Guo, P., Jiang, L. and Xiang, P. (2024), "Seismic safety assessment with non-Gaussian random processes for train-bridge coupled systems", Earthq. Eng. Eng. Vib., 23(1), 241-260. https://doi.org/10.1007/s11803-024-2235-y.
  52. Zhao, H., Wei, B., Jiang, L. and Xiang, P. (2022), "Seismic running safety assessment for stochastic vibration of train-bridge coupled system", Arch. Civil Mech. Eng., 22(4), 180. https://doi.org/10.1007/s43452-022-00451-3.
  53. Zhao, H., Wei, B., Jiang, L., Xiang, P., Zhang, X., Ma, H., ... & Xie, X. (2023), "A velocity-related running safety assessment index in seismic design for railway bridge", Mech. Syst. Signal Pr., 198, 110305. https://doi.org/10.1016/j.ymssp.2023.110305.
  54. Zhao, H., Wei, B., Zhang, P., Guo, P., Shao, Z., Xu, S., ... & Xiang, P. (2024), "Safety analysis of high-speed trains on bridges under earthquakes using a LSTM-RNN-based surrogate model", Comput. Struct., 294, 107274. https://doi.org/10.1016/j.compstruc.2024.107274.