과제정보
This research was supported by Ainex Co. Ltd.
참고문헌
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7-30. https://doi.org/10.3322/caac.21442
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424. https://doi.org/10.3322/caac.21492
- Imagawa A, Okada H, Kawahara Y, Takenaka R, Kato J, Kawamoto H, et al. Endoscopic submucosal dissection for early gastric cancer: results and degrees of technical difficulty as well as success. Endoscopy 2006;38:987-990. https://doi.org/10.1055/s-2006-944716
- Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin 2017;67:93-99. https://doi.org/10.3322/caac.21388
- Sano T, Coit DG, Kim HH, Roviello F, Kassab P, Wittekind C, et al. Proposal of a new stage grouping of gastric cancer for TNM classification: International Gastric Cancer Association staging project. Gastric Cancer 2017;20:217-225. https://doi.org/10.1007/s10120-016-0601-9
- Pimenta-Melo AR, Monteiro-Soares M, Libanio D, Dinis-Ribeiro M. Missing rate for gastric cancer during upper gastrointestinal endoscopy: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2016;28:1041-1049. https://doi.org/10.1097/MEG.0000000000000657
- Veitch AM, Uedo N, Yao K, East JE. Optimizing early upper gastrointestinal cancer detection at endoscopy. Nat Rev Gastroenterol Hepatol 2015;12:660-667. https://doi.org/10.1038/nrgastro.2015.128
- Chiu PW, Uedo N, Singh R, Gotoda T, Ng EK, Yao K, et al. An Asian consensus on standards of diagnostic upper endoscopy for neoplasia. Gut 2019;68:186-197. https://doi.org/10.1136/gutjnl-2018-317111
- Hamashima C; Systematic Review Group and Guideline Development Group for Gastric Cancer Screening Guidelines. Update version of the Japanese Guidelines for Gastric Cancer Screening. Jpn J Clin Oncol 2018;48:673-683. https://doi.org/10.1093/jjco/hyy077
- Nakanishi H, Doyama H, Ishikawa H, Uedo N, Gotoda T, Kato M, et al. Evaluation of an e-learning system for diagnosis of gastric lesions using magnifying narrow-band imaging: a multicenter randomized controlled study. Endoscopy 2017;49:957-967. https://doi.org/10.1055/s-0043-111888
- Luo Q, Yang H, Hu B. Application of artificial intelligence in the endoscopic diagnosis of early gastric cancer, atrophic gastritis, and Helicobacter pylori infection. J Dig Dis 2022;23:666-674. https://doi.org/10.1111/1751-2980.13154
- Renna F, Martins M, Neto A, Cunha A, Libanio D, Dinis-Ribeiro M, et al. Artificial intelligence for upper gastrointestinal endoscopy: a roadmap from technology development to clinical practice. Diagnostics (Basel) 2022;12:1278.
- Sharma P, Hassan C. Artificial intelligence and deep learning for upper gastrointestinal neoplasia. Gastroenterology 2022;162:1056-1066. https://doi.org/10.1053/j.gastro.2021.11.040
- Wu L, He X, Liu M, Xie H, An P, Zhang J, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. Endoscopy 2021;53:1199-1207. https://doi.org/10.1055/a-1350-5583
- Nam JY, Chung HJ, Choi KS, Lee H, Kim TJ, Soh H, et al. Deep learning model for diagnosing gastric mucosal lesions using endoscopic images: development, validation, and method comparison. Gastrointest Endosc 2022;95:258-268.e10. https://doi.org/10.1016/j.gie.2021.08.022
- Gong EJ, Bang CS, Lee JJ, Baik GH, Lim H, Jeong JH, et al. Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study. Endoscopy 2023;55:701-708. https://doi.org/10.1055/a-2031-0691
- Wu L, Wang J, He X, Zhu Y, Jiang X, Chen Y, et al. Deep learning system compared with expert endoscopists in predicting early gastric cancer and its invasion depth and differentiation status (with videos). Gastrointest Endosc 2022;95:92-104.e3. https://doi.org/10.1016/j.gie.2021.06.033
- Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In: Kamalika C, Ruslan S, eds. Proceedings of the 36th International Conference on Machine Learning, PMLR, Volume 97; 2019 June 9-15; Long Beach, CA, USA. MLResearchPress, 2019:6105-6114.
- Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of StyleGAN. arXiv. Forthcoming 2020.
- Cao J, Pang J, Weng X, Khirodkar R, Kitani K. Observation-centric SORT: rethinking SORT for robust multi-object tracking. arXiv. Forthcoming 2022.
- Wu L, Xu M, Jiang X, He X, Zhang H, Ai Y, et al. Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos). Gastrointest Endosc 2022;95:269-280.e6. https://doi.org/10.1016/j.gie.2021.09.017
- Wei MT, Shankar U, Parvin R, Abbas SH, Chaudhary S, Friedlander Y, et al. Evaluation of computer-aided detection during colonoscopy in the community (AI-SEE): a multicenter randomized clinical trial. Am J Gastroenterol 2023;118:1841-1847. https://doi.org/10.14309/ajg.0000000000002239
- Won CS, Cho MY, Kim HS, Kim HJ, Suk KT, Kim MY, et al. Upgrade of lesions initially diagnosed as low-grade gastric dysplasia upon forceps biopsy following endoscopic resection. Gut Liver 2011;5:187-193. https://doi.org/10.5009/gnl.2011.5.2.187
- You A, Kim JK, Ryu IH, Yoo TK. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. Eye Vis (Lond) 2022;9:6.
- Kanayama T, Kurose Y, Tanaka K, Aida K, Satoh S, Kitsuregawa M, et al. Gastric cancer detection from endoscopic images using synthesis by GAN. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2019: 22nd International Conference; 2019 October 13-17; Shenzhen, China. Shenzhen: Springer-Verlag, 2019:530-538.
- Shumailov I, Shumaylov Z, Zhao Y, Gal Y, Papernot N, Anderson R. The curse of recursion: training on generated data makes models forget. arXiv. Forthcoming 2023.
- Horiuchi Y, Hirasawa T, Ishizuka N, Tokai Y, Namikawa K, Yoshimizu S, et al. Performance of a computeraided diagnosis system in diagnosing early gastric cancer using magnifying endoscopy videos with narrow-band imaging (with videos). Gastrointest Endosc 2020;92:856-865.e1. https://doi.org/10.1016/j.gie.2020.04.079
- Wu L, Shang R, Sharma P, Zhou W, Liu J, Yao L, et al. Effect of a deep learning-based system on the miss rate of gastric neoplasms during upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial. Lancet Gastroenterol Hepatol 2021;6:700-708. https://doi.org/10.1016/S2468-1253(21)00216-8
- Kim JH, Nam SJ, Park SC. Usefulness of artificial intelligence in gastric neoplasms. World J Gastroenterol 2021;27:3543-3555. https://doi.org/10.3748/wjg.v27.i24.3543