DOI QR코드

DOI QR Code

Bovine mastitis-associated Escherichia coli

  • Hong Qui Le (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Se Kye Kim (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Jang Won Yoon (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University)
  • Received : 2024.06.19
  • Accepted : 2024.06.21
  • Published : 2024.06.30

Abstract

Bovine mastitis-associated Escherichia coli (BMEC) is considered the main causative agent of significant financial losses in the dairy industry worldwide, as it alters both the quantity and quality of milk produced and increases the rate of culling. This creates a variety of challenges for researchers, veterinarians, and farmers in understanding and determining the most effective therapies and diagnostic techniques. Subclinical mastitis is particularly concerning, as infected bovines exhibit no obvious symptoms and continue to secrete apparently normal milk over an extended period, allowing the causative pathogen, E. coli, to spread within the herd. For effective prevention, understanding the pathogenesis of mastitis through three stages invasion, infection, and inflammation is essential. To date, no clear correlation has been found between virulence factors and pathogenicity contributing to the clinical severity of BMEC. Multidrug-resistant E. coli and the evolution of novel resistance mechanisms have become concerns owing to the extensive use of antibiotics to treat mastitis. Therefore, it is vital to explore alternative controls to enhance the efficacy of BMEC treatment. Over the past 30 years, various genetic typing techniques have been used to examine the subspecies-level epidemiology of bovine mastitis. These studies have advanced our understanding of the origin, transmission pathway, population structure, and evolutionary relatedness of BMEC strains. In this review we provide an overview of BMEC, including insights into its etiology, genetic relationship, pathogenesis, and management of the disease, as well as new therapy options.

소 유방염 관련 대장균(BMEC)은 생산되는 우유의 양과 품질을 변화시키고 도태율을 높임으로써 전 세계 낙농 산업에 심각한 재정적 손실을 초래할 수 있는 주요 원인 물질로 간주된다. 연구자, 수의사, 농부가 가장 효과적인 치료법과 진단 기술을 이해하고 결정하는 것은 젖소 유방염을 극복하는데 중요하다. 특히 무증상 혹은 준임상형 유방염의 경우, 소는 뚜렷한 증상을 보이지 않고, 장기간에 걸쳐 겉보기에 정상적인 우유를 계속 분비하여 원인 병원체인 대장균이 무리 내에서 감염을 퍼뜨릴 수 있다. 유방염 예방을 위해서는, 병원균의 유방 내 침입, 감염 확립, 유방의 염증의 3단계 병인 과정에 대한 이해가 필수적이다. 지금까지 대장균 유방염의 임상적 중증도에 기여하는 독성 인자와 병원성 사이에 명확한 상관관계가 발견되지 않았다. 다제내성 대장균과 새로운 내성 기전의 진화는 유방염 치료에 항생제를 광범위하게 사용하고 있기 때문에 문제시 되고 있는 실정이다. 따라서 BMEC 치료의 효능을 향상시키기 위해서는 대체제 발굴이 중요하다. 지난 30년 동안 소 유방염의 역학 조사를 위해 다양한 유전자형 분석 기술이 사용되었다. 이러한 연구는 BMEC 계통 간의 진화 관련성 뿐 아니라 기원, 전염 경로, 개체군 구조에 대한 이해를 크게 향상시켰다. 따라서 본 리뷰에서는 BMEC의 전반적 개요를 제공하여 병인, 유전적 관계, 발병 기전, 관리 및 질병 통제를 위한 새로운 치료 옵션에 대한 통찰력을 제공하고자 한다.

Keywords

Acknowledgement

This study was supported by a grant from Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through Technology Commercialization Support Program, Ministry of Agriculture, Food and Rural Affairs (RS-2022-IP322055), Republic of Korea.

References

  1. Goulart, D.B., Mellata, M., Escherichia coli Mastitis in dairy cattle: etiology, diagnosis, and treatment challenges. Front. Microbiol., 13, 928346 (2022).
  2. Azooz, M.F., El-Wakeel, S.A., Yousef, H.M., Financial and economic analyses of the impact of cattle mastitis on the profitability of Egyptian dairy farms. Vet. World, 13, 1750-1759 (2020).
  3. He, W., Ma, S., Lei, L., He, J., Li, X., Tao, J., Wang, X., Song, S., Wang, Y., Wang, Y., Shen, J., Cai, C., Wu, C., Prevalence, etiology, and economic impact of clinical mastitis on large dairy farms in China. Vet. Microbiol., 242, 108570 (2020).
  4. Dalanezi, F.M., Joaquim, S.F., Guimaraes, F.F., Guerra, S.T., Lopes, B.C., Schmidt, E.M.S., Cerri, R.L.A., Langoni, H., Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. J. Dairy Sci., 103, 3648-3655 (2020).
  5. Romero, J., Benavides, E., Meza, C., Assessing financial impacts of subclinical mastitis on colombian dairy farms. Front. Vet. Sci., 5, 273 (2018).
  6. Denis, M., Wedlock, D.N., Lacy-Hulbert, S.J., Hillerton, J.E., Buddle, B.M., Vaccines against bovine mastitis in the New Zealand context: what is the best way forward? N Z Vet. J., 57, 132-140 (2009).
  7. Gruet, P., Maincent, P., Berthelot, X., Kaltsatos, V., Bovine, mastitis and intramammary drug delivery: review and perspectives. Adv. Drug Deliv. Rev., 50, 245-259 (2001).
  8. Shafiq, M., Huang, J., Shah, J.M., Wang, X., Rahman, S.U., Ali, I., Chen, L., Wang, L., Characterization and virulence factors distribution of bla(CTX-M) and mcr-1carrying Escherichia coli isolates from bovine mastitis. J. Appl. Microbiol., 131, 634-646 (2021).
  9. Ruegg, P.L., A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci., 100, 10381-10397 (2017).
  10. Cheng, W.N., Han, S.G., Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - a review. Asian-Australas J. Anim. Sci., 33, 1699-1713 (2020).
  11. Sztachanska, M., Baranski, W., Janowski, T., Pogorzelska, J., Zdunczyk, S., Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Pol. J. Vet. Sci., 19, 119-124 (2016).
  12. Blum, S.E., Heller, E.D., Jacoby, S., Krifucks, O., Leitner, G., Comparison of the immune responses associated with experimental bovine mastitis caused by different strains of Escherichia coli. J. Dairy Res., 84, 190-197 (2017).
  13. Gao, J., Barkema, H.W., Zhang, L., Liu, G., Deng, Z., Cai, L., Shan, R., Zhang, S., Zou, J., Kastelic, J.P., Han, B., Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J. Dairy Sci., 100, 4797-4806 (2017).
  14. Shpigel, N.Y., Elazar, S., Rosenshine, I., Mammary pathogenic Escherichia coli. Curr. Opin. Microbiol., 11, 60-65 (2008).
  15. Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A., Laxminarayan, R., Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U S A, 112, 5649-5654 (2015).
  16. Maity, S., Ambatipudi, K., Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective. FEMS Microbiol. Ecol., 97, 1-17 (2020).
  17. Kaper, J.B., Nataro, J.P., Mobley, H.L., Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2, 123-140 (2004).
  18. Smith, K.L., Hogan, J.S., Environmental mastitis. Vet. Clin. North Am. Food Anim. Pract., 9, 489-498 (1993).
  19. Fernandes, J.B., Zanardo, L.G., Galvao, N.N., Carvalho, I.A., Nero, L.A., Moreira, M.A., Escherichia coli from clinical mastitis: serotypes and virulence factors. J. Vet. Diagn. Invest., 23, 1146-1152 (2011).
  20. Frost, A.J., Hill, A.W., Brooker, B.E., Pathogenesis of experimental bovine mastitis following a small inoculum of Escherichia coli. Res. Vet. Sci., 33, 105-112 (1982).
  21. Blum, S., Heller, E.D., Krifucks, O., Sela, S., Hammer-Muntz, O., Leitner, G., Identification of a bovine mastitis Escherichia coli subset. Vet. Microbiol., 132, 135-148 (2008).
  22. Burvenich, C., Van Merris, V., Mehrzad, J., Diez-Fraile, A., Duchateau, L., Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res., 34, 521-564 (2003).
  23. Zadoks, R.N., Middleton, J.R., McDougall, S., Katholm, J., Schukken, Y.H., Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. Neoplasia, 16, 357-372 (2011).
  24. Clermont, O., Christenson, J.K., Denamur, E., Gordon, D. M., The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep., 5, 58-65 (2013).
  25. Clermont, O., Bonacorsi, S., Bingen, E., Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol., 66, 4555-4558 (2000).
  26. Blum, S.E., Leitner, G., Genotyping and virulence factors assessment of bovine mastitis Escherichia coli. Vet. Microbiol., 163, 305-312 (2013).
  27. Nuesch-Inderbinen, M., Kappeli, N., Morach, M., Eicher, C., Corti, S., Stephan, R., Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet. Rec. Open, 6, e000369 (2019).
  28. Jung, D., Park, S., Ruffini, J., Dussault, F., Dufour, S., Ronholm, J., Comparative genomic analysis of Escherichia coli isolates from cases of bovine clinical mastitis identifies nine specific pathotype marker genes. Microb. Genom., 7, 000597 (2021).
  29. Bassel, L.L., Caswell, J.L., Bovine neutrophils in health and disease. Cell. Tissue Res., 371, 617-637 (2018).
  30. Ingvartsen, K.L., Moyes, K.M., Factors contributing to immunosuppression in the dairy cow during the periparturient period. Jpn. J. Vet. Res., 63 Suppl 1, S15-24 (2015).
  31. Shimazaki, K.I., Kawai, K., Advances in lactoferrin research concerning bovine mastitis. Biochem. Cell Biol., 95, 69-75 (2017).
  32. Rybarczyk, J., Kieckens, E., Vanrompay, D., Cox, E., In vitro and in vivo studies on the antimicrobial effect of lactoferrin against Escherichia coli O157:H7. Vet. Microbiol., 202, 23-28 (2017).
  33. Long, E., Capuco, A.V., Wood, D.L., Sonstegard, T., Tomita, G., Paape, M.J., Zhao, X., Escherichia coli induces apoptosis and proliferation of mammary cells. Cell Death Differ., 8, 808-816 (2001).
  34. Bannerman, D.D., Paape, M.J., Hare, W.R., Sohn, E.J., Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. J. Dairy Sci., 86, 3128-3137 (2003).
  35. Ghanbarpour, R., Oswald, E., Phylogenetic distribution of virulence genes in Escherichia coli isolated from bovine mastitis in Iran. Res. Vet. Sci., 88, 6-10 (2010).
  36. Zaatout, N., An overview on mastitis-associated Escherichia coli: Pathogenicity, host immunity and the use of alternative therapies. Microbiol. Res., 256, 126960 (2022).
  37. Fairbrother, J.H., Dufour, S., Fairbrother, J.M., Francoz, D., Nadeau, E., Messier, S., Characterization of persistent and transient Escherichia coli isolates recovered from clinical mastitis episodes in dairy cows. Vet. Microbiol., 176, 126-133 (2015).
  38. Guerra, S.T., Orsi, H., Joaquim, S.F., Guimaraes, F.F., Lopes, B.C., Dalanezi, F.M., Leite, D.S., Langoni, H., Pantoja, J.C. F., Rall, V.L.M., Hernandes, R.T., Lucheis, S.B., Ribeiro, M.G., Short communication: Investigation of extra-intestinal pathogenic Escherichia coli virulence genes, bacterial motility, and multidrug resistance pattern of strains isolated from dairy cows with different severity scores of clinical mastitis. J. Dairy Sci., 103, 3606-3614 (2020).
  39. Orsi, H., Guimaraes, F.F., Leite, D.S., Guerra, S.T., Joaquim, S.F., Pantoja, J.C.F., Hernandes, R.T., Lucheis, S.B., Ribeiro, M.G., Langoni, H., Rall, V.L.M., Characterization of mammary pathogenic Escherichia coli reveals the diversity of Escherichia coli isolates associated with bovine clinical mastitis in Brazil. J. Dairy Sci., 106, 1403-1413 (2023).
  40. Leimbach, A., Poehlein, A., Witten, A., Wellnitz, O., Shpigel, N., Petzl, W., Zerbe, H., Daniel, R., Dobrindt, U., Whole-genome draft sequences of six commensal fecal and six mastitis-associated Escherichia coli strains of bovine origin. Genome. Announc., 4, e00753-16 (2016).
  41. Dopfer, D., Almeida, R.A., Lam, T.J., Nederbragt, H., Oliver, S.P., Gaastra, W., Adhesion and invasion of Escherichia coli from single and recurrent clinical cases of bovine mastitis in vitro. Vet. Microbiol., 74, 331-343 (2000).
  42. Liu, Y., Liu, G., Liu, W., Liu, Y., Ali, T., Chen, W., Yin, J., Han, B., Phylogenetic group, virulence factors and antimicrobial resistance of Escherichia coli associated with bovine mastitis. Res. Microbiol., 165, 273-277 (2014).
  43. Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., FrejMadrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., Choroszy-Krol, I., Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut. Pathog., 11, 10 (2019).
  44. White, L.J., Schukken, Y.H., Dogan, B., Green, L., Dopfer, D., Chappell, M.J., Medley, G.F., Modelling the dynamics of intramammary E. coli infections in dairy cows: understanding mechanisms that distinguish transient from persistent infections. Vet. Res., 41, 13 (2010).
  45. Silva, V.O., Soares, L.O., Silva Junior, A., Mantovani, H.C., Chang, Y.F., Moreira, M.A., Biofilm formation on biotic and abiotic surfaces in the presence of antimicrobials by Escherichia coli Isolates from cases of bovine mastitis. Appl. Environ. Microbiol., 80, 6136-6145 (2014).
  46. Blum, S.E., Heller, E.D., Sela, S., Elad, D., Edery, N., Leitner, G., Genomic and phenomic study of mammary pathogenic Escherichia coli. PLoS One, 10, e0136387 (2015).
  47. Saini, V., McClure, J.T., Leger, D., Keefe, G.P., Scholl, D.T., Morck, D.W., Barkema, H.W., Antimicrobial resistance profiles of common mastitis pathogens on Canadian dairy farms. J. Dairy Sci., 95, 4319-4332 (2012).
  48. Tseng, C.H., Liu, C.W., Liu, P.Y., Extended-spectrum β-lactamases (ESBL) producing bacteria in animals. Antibiotics (Basel), 12, 661 (2023).
  49. Klaas, I.C., Zadoks, R.N., An update on environmental mastitis: Challenging perceptions. Transbound. Emerg. Dis., 65 Suppl 1, 166-185 (2018).
  50. Tark, D.S., Moon, D.C., Kang, H.Y., Kim, S.R., Nam, H.M., Lee, H.S., Jung, S.C., Lim, S.K., Antimicrobial susceptibility and characterization of extended-spectrum β-lactamases in Escherichia coli isolated from bovine mastitic milk in South Korea from 2012 to 2015. J. Dairy Sci., 100, 3463-3469 (2017).
  51. Naranjo-Lucena, A., Slowey, R., Invited review: antimicrobial resistance in bovine mastitis pathogens: a review of genetic determinants and prevalence of resistance in European countries. J. Dairy Sci., 106, 1-23 (2023).
  52. Poirel, L., Madec, J.Y., Lupo, A., Schink, A.K., Kieffer, N., Nordmann, P., Schwarz, S., Antimicrobial resistance in Escherichia coli. Microbiol. Spectr., 6, 1-27 (2018).
  53. Bengtsson, B., Unnerstad, H.E., Ekman, T., Artursson, K., Nilsson-Ost, M., Waller, K.P., Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Vet. Microbiol., 136, 142-149 (2009).
  54. Tooke, C.L., Hinchliffe, P., Bragginton, E.C., Colenso, C.K., Hirvonen, V.H.A., Takebayashi, Y., Spencer, J., β-lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol., 431, 3472-3500 (2019).
  55. Tamang, M.D., Nam, H.M., Gurung, M., Jang, G.C., Kim, S.R., Jung, S.C., Park, Y. H., Lim, S.K., Molecular characterization of CTX-M β-lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl. Environ. Microbiol., 79, 3898-3905 (2013).
  56. Freitag, C., Michael, G.B., Kadlec, K., Hassel, M., Schwarz, S., Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet. Microbiol., 200, 151-156 (2017).
  57. Oliveira, L., Ruegg, P.L., Treatments of clinical mastitis occurring in cows on 51 large dairy herds in Wisconsin. J. Dairy Sci., 97, 5426-5436 (2014).
  58. Fuenzalida, M.J., Ruegg, P.L., Negatively controlled, randomized clinical trial to evaluate use of intramammary ceftiofur for treatment of nonsevere culture-negative clinical mastitis. J. Dairy Sci., 102, 3321-3338 (2019).
  59. Gomes, F., Henriques, M., Control of bovine mastitis: old and recent therapeutic approaches. Curr. Microbiol., 72, 377-382 (2016).
  60. Pasca, C., Marghitas , L., Dezmirean, D., Bobis, O., Bonta, V., Chirila, F., Matei, I., Fit , N., Medicinal plants based products tested on pathogens isolated from mastitis milk. Molecules, 22, 1473 (2017).
  61. Ananda Baskaran, S., Kazmer, G.W., Hinckley, L., Andrew, S.M., Venkitanarayanan, K., Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. J. Dairy Sci., 92, 1423-1429 (2009).
  62. Kaithwas, G., Mukerjee, A., Kumar, P., Majumdar, D.K., Linum usitatissimum (linseed/flaxseed) fixed oil: antimicrobial activity and efficacy in bovine mastitis. Inflammopharmacology, 19, 45-52 (2011).
  63. Kher, M.N., Sheth, N.R., Bhatt, V.D., In vitro antibacterial evaluation of Terminalia chebula as an alternative of antibiotics against bovine subclinical mastitis. Anim. Biotechnol., 30, 151-158 (2019).
  64. Zhao, Q.Y., Yuan, F.W., Liang, T., Liang, X.C., Luo, Y.R., Jiang, M., Qing, S.Z., Zhang, W.M., Baicalin inhibits Escherichia coli isolates in bovine mastitic milk and reduces antimicrobial resistance. J. Dairy Sci., 101, 2415-2422 (2018).
  65. Kutila, T., Suojala, L., Lehtolainen, T., Saloniemi, H., Kaartinen, L., Tahti, M., Seppala, K., Pyorala, S., The efficacy of bovine lactoferrin in the treatment of cows with experimentally induced Escherichia coli mastitis. J. Vet. Pharmacol. Ther., 27, 197-202 (2004).
  66. Carvalho, C., Costa, A.R., Silva, F., Oliveira, A., Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit. Rev. Microbiol., 43, 583-601 (2017).
  67. da Silva Duarte, V., Dias, R.S., Kropinski, A.M., Campanaro, S., Treu, L., Siqueira, C., Vieira, M.S., da Silva Paes, I., Santana, G.R., Martins, F., Crispim, J.S., da Silva Xavier, A., Ferro, C.G., Vidigal, P.M.P., da Silva, C.C., de Paula, S.O., Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows. Sci. Rep., 8, 6845 (2018).
  68. Porter, J., Anderson, J., Carter, L., Donjacour, E., Paros, M., In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J. Dairy Sci., 99, 2053-2062 (2016).
  69. Ali, M., Ijaz, M., Ikram, M., Ul-Hamid, A., Avais, M., Anjum, A.A., Biogenic synthesis, characterization and antibacterial potential evaluation of copper oxide nanoparticles against Escherichia coli. Nanoscale Res. Lett., 16, 148 (2021).
  70. Yu, L., Shang, F., Chen, X., Ni, J., Yu, L., Zhang, M., Sun, D., Xue, T., The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ, 6, e5711 (2018).
  71. Vilar, M.J., Rajala-Schultz, P.J., Dry-off and dairy cow udder health and welfare: Effects of different milk cessation methods. Vet. J., 262, 105503 (2020).
  72. Hogan, J., Smith, K.L., Managing environmental mastitis. Vet. Clin. North Am. Food Anim. Pract., 28, 217-224 (2012).
  73. Rainard, P., Gilbert, F.B., Germon, P., Foucras, G., Invited review: a critical appraisal of mastitis vaccines for dairy cows. J. Dairy Sci., 104, 10427-10448 (2021).
  74. Brade, L., Hensen, S., Brade, H., Evaluation of a LPS-based glycoconjugate vaccine against bovine Escherichia coli mastitis: formation of LPS Abs in cows after immunization with E. coli core oligosaccharides conjugated to hemocyanine. Innate Immun., 19, 368-377 (2013).
  75. Tahar, S., Nabil, M.M., Safia, T., Ngaiganam, E.P., Omar, A., Hafidha, C., Hanane, Z., Rolain, J.M., Diene, S.M., Molecular characterization of multidrug-resistant Escherichia coli isolated from milk of dairy cows with cinical mastitis in algeria. J. Food Prot., 83, 2173-2178 (2020).
  76. Saidani, M., Messadi, L., Soudani, A., Daaloul-Jedidi, M., Chatre, P., Ben Chehida, F., Mamlouk, A., Mahjoub, W., Madec, J.Y., Haenni, M., Epidemiology, antimicrobial resistance, and extended-spectrum β-lactamase-producing enterobacteriaceae in clinical bovine mastitis in Tunisia. Microb. Drug Resist., 24, 1242-1248 (2018).
  77. Aslam, N., Khan, S.U., Usman, T., Ali, T., Phylogenetic genotyping, virulence genes and antimicrobial susceptibility of Escherichia coli isolates from cases of bovine mastitis. J. Dairy Res., 88, 78-79 (2021).
  78. Ali, T., Rahman, S.U., Zhang, L., Shahid, M., Han, D., Gao, J., Zhang, S., Ruegg, P. L., Saddique, U., Han, B., Characteristics and genetic diversity of multi-drug resistant extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from bovine mastitis. Oncotarget, 8, 90144-90163 (2017).
  79. Zhang, D., Zhang, Z., Huang, C., Gao, X., Wang, Z., Liu, Y., Tian, C., Hong, W., Niu, S., Liu, M., The phylogenetic group, antimicrobial susceptibility, and virulence genes of Escherichia coli from clinical bovine mastitis. J. Dairy Sci., 101, 572-580 (2018).
  80. Ohnishi, M., Okatani, A.T., Harada, K., Sawada, T., Marumo, K., Murakami, M., Sato, R., Esaki, H., Shimura, K., Kato, H., Uchida, N., Takahashi, T., Genetic characteristics of CTX-M-type extended-spectrum-β-lactamase (ESBL)-producing enterobacteriaceae involved in mastitis cases on Japanese dairy farms, 2007 to 2011. J. Clin. Microbiol., 51, 3117-3122 (2013).
  81. Campos, F.C., Castilho, I.G., Rossi, B.F., Bonsaglia, E.C.R., Dantas, S.T.A., Dias, R.C.B., Fernandes Junior, A., Hernandes, R.T., Camargo, C.H., Ribeiro, M.G., Pantoja, J.C.F., Langoni, H., Rall, V.L.M., Genetic and antimicrobial resistance profiles of mammary pathogenic E. coli (MPEC) isolates from bovine clinical mastitis. Pathogens, 11, 1435 (2022).
  82. Majumder, S., Jung, D., Ronholm, J., George, S., Prevalence and mechanisms of antibiotic resistance in Escherichia coli isolated from mastitic dairy cattle in Canada. BMC Microbiol., 21, 222 (2021).
  83. Tomazi, T., Coura, F.M., Goncalves, J.L., Heinemann, M.B., Santos, M.V., Antimicrobial susceptibility patterns of Escherichia coli phylogenetic groups isolated from bovine clinical mastitis. J. Dairy Sci., 101, 9406-9418 (2018).
  84. Keane, O.M., Genetic diversity, the virulence gene profile and antimicrobial resistance of clinical mastitis-associated Escherichia coli. Res. Microbiol., 167, 678-684 (2016).
  85. Eisenberger, D., Carl, A., Balsliemke, J., Kampf, P., Nickel, S., Schulze, G., Valenza, G., Molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolates from milk samples of dairy cows with mastitis in Bavaria, Germany. Microb. Drug Resist., 24, 505-510 (2018).
  86. Alawneh, J.I., Vezina, B., Ramay, H.R., Al-Harbi, H., James, A.S., Soust, M., Moore, R.J., Olchowy, T.W.J., Survey and sequence characterization of bovine mastitis-associated Escherichia coli in dairy herds. Front. Vet. Sci., 7, 582297 (2020).
  87. Ahmed, W., Neubauer, H., Tomaso, H., El Hofy, F.I., Monecke, S., Abd El-Tawab, A.A., Hotzel, H., Characterization of enterococci- and ESBL-producing Escherichia coli isolated from milk of bovides with mastitis in egypt. Pathogens, 10, 97 (2021).
  88. Dahmen, S., Metayer, V., Gay, E., Madec, J.Y., Haenni, M., Characterization of extended-spectrum β-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet. Microbiol., 162, 793-799 (2013).
  89. Geser, N., Stephan, R., Hachler, H., Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res., 8, 21 (2012).