DOI QR코드

DOI QR Code

한국산 민무늬둑중개 Cottus pollux (Pisces: Cottidae)의 분포 현황

Current Distribution of Cottus pollux (Pisces: Cottidae) in Korea

  • 투고 : 2024.04.28
  • 심사 : 2024.06.08
  • 발행 : 2024.06.30

초록

한국산 민무늬둑중개 Cottus pollux의 분포 현황을 알아보기 위하여 2022년 9~11월과 2023년 3~5월에 과거 출현지역과 출현 예상지역을 대상으로 현장 조사와 환경 DNA 분석을 병행하였다. 25개 수계 86개 지점을 현장 조사한 결과, 민무늬둑중개는 형산강 수계의 최상류, 덕동천, 절골천 및 대종천 수계의 호암천 등 2개 수계 4개 지점에서 서식이 확인되었다. 민무늬둑중개의 서식지 특징은 하천 상류 계곡부의 오염원이 적고 물이 맑으며, 하상은 큰돌과 작은돌의 비율이 높은 여울부였다. 환경 DNA 분석에서 양성으로 판별된 시료는 현장 조사에서 민무늬둑중개의 서식이 확인된 하천을 모두 포함하였고, 이외 남천(형산강 수계)과 신광천(냉천 수계)이 양성으로 판별되어 잠재적 서식지로서 가능성을 나타냈다. 민무늬둑중개는 분포역이 협소하고 개체군 크기가 작으므로, 안정적인 개체군 유지를 위해서는 서식지 교란의 주원인인 태풍, 하천공사의 피해로부터 즉각 대응할 수 있도록 지속적인 모니터링과 보전 대책이 요구되었다.

Current distribution of Korean Cottus pollux was investigated by conducting field surveys and environmental DNA analysis in September to November 2022 and March to May 2023. As a result of the field survey, the presence of C. pollux was confirmed in the uppermost stream of Hyeongsangang River, as well as in Deokdongcheon, Jeolgolcheon, and Hoamcheon Streams. The main habitat of C. pollux was the riffle area in the upper reaches of streams with clean water and boulder-cobble bottoms. As a result of environmental DNA analysis, the samples determined to be positive included all streams in which the presence of C. pollux was confirmed in the field survey. In addition, Namcheon and Singwangcheon Streams were determined to be positive, indicating potential as its habitats. Since C. pollux has a narrow distribution area and a small population size, continuous monitoring and conservation measures are required to immediately respond to damage caused by typhoons and river works, which are the main causes of habitat disturbance, in order to maintain a stable population.

키워드

과제정보

연구 수행에 도움을 주신 국립공원공단 및 경주국립공원사무소 직원 여러분께 감사를 표합니다.

참고문헌

  1. Barbarossa, V., J. Bosmans, N. Wanders, H. King, M.F. Bierkens, M.A. Huijbregts and A.M. Schipper. 2021. Threats of global warming to the world's freshwater fishes. Nature Communications 12: 1701.
  2. Byeon, H.K. and B.R. Lee. 2017. The population characteristic of first record on the Cottus koreanus from Hoam Stream, Korea. Korean Journal of Environment and Ecology 31: 166-173. https://doi.org/10.13047/KJEE.2017.31.2.166
  3. Chae, B.S., H.B. Song and J.Y. Park. 2019. A field guide to the freshwater fishes of Korea. LG Evergreen Foundation, Seoul.
  4. Cummins, K.W. 1962. An evolution of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. The American Midland Naturalist 67: 477-504. https://doi.org/10.2307/2422722
  5. Foglini, C., P. Sala, C. Zellino and P. Volta. 2018. Autoecology of the bullhead Cottus gobio in the Province of Verbano Cusio Ossola. IdroLIFE Project 1.
  6. Froese, R. and D. Pauly. 2024. FishBase: available at: http://www.fishbase.org (Version 02/2024).
  7. Goto, A. 1978. Comparative studies on the maturation process of two types of Cottus nozawae - I. The annual cycle of ovarian development. Japanese Journal of Ichthyology 25: 115-123.
  8. Goto, A. 1990. Alternative life-history styles of Japanese freshwater sculpins revisited. Environmental Biology of Fishes 28: 101-112. https://doi.org/10.1007/BF00751030
  9. Goto, A. and T. Arai. 2003. Migratory histories of three types of Cottus pollux (small-egg, middle-egg, and large-egg types) as revealed by otolith microchemistry. Ichthyological Research 50: 0067-0072. https://doi.org/10.1007/s102280300009
  10. Hosoya, K. 2015. Freshwater fishes of Japan. Yama-kei Publishers Co. Ltd., Tokyo.
  11. Hwang, D.S., H.K. Byeon and J.S. Lee. 2013a. Complete mitochondrial genome of the freshwater sculpin Cottus hangiongensis (Scorpaeniformes, Cottidae). Mitochondrial DNA 24: 674-675.
  12. Hwang, D.S., H.K. Byeon and J.S. Lee. 2013b. Complete mitochondrial genome of the freshwater sculpin Cottus koreanus (Scorpaeniformes, Cottidae). Mitochondrial DNA 24: 490-491. https://doi.org/10.3109/19401736.2013.770500
  13. Imoto, J.M., K. Saitoh, T. Sasaki, T. Yonezawa, J. Adachi, Y.P. Kartavtsev, M. Miya, M. Nishida and N. Hanzawa. 2013. Phylogeny and biogeography of highly diverged freshwater fish species (Leuciscinae, Cyprinidae, Teleostei) inferred from mitochondrial genome analysis. Gene 514: 112-124. https://doi.org/10.1016/j.gene.2012.10.019
  14. IUCN (International Union for Conservation of Nature). 2001. IUCN red list categories and criteria: Version 3.1. IUCN species survival comission. IUCN, Gland and Cambridge.
  15. Jo, T., S. Ikeda, A. Fukuoka, T. Inagawa, J. Okitsu, I. Katano, H. Doi, K. Nakai, H. Ichiyanagi and T. Minamoto. 2021. Utility of environmental DNA analysis for effective monitoring of invasive fish species in reservoirs. Ecosphere 12: e03643.
  16. Kang, B., J. Deng, X. Huang, L. Chen and Y. Feng. 2013. Explaining freshwater fish biogeography: history versus environment versus species personality. Reviews in Fish Biology and Fisheries 23: 523-536. https://doi.org/10.1007/s11160-013-9314-x
  17. Kani, T. 1944. Ecology of torrent-inhabiting insects. In: Furukawa, J.(ed.), Insect I. Kenkyu-sha, Tokyo.
  18. Kanno, K., N. Onikura, Y. Kurita, A. Koyama and J. Nakajima. 2018. Morphological, distributional, and genetic characteristics of Cottus pollux in the Kyushu Island, Japan: indication of fluvial and amphidromous life histories within a single lineage. Ichthyological Research 65: 462-470. https://doi.org/10.1007/s10228-018-0637-4
  19. Katoh, K. and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010
  20. Katoh, K., K. Misawa, K.I. Kuma and T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 30593066.
  21. Kawanabe, H. and N. Mizuno. 1989. Freshwater fishes of Japan. Jama to Keikoku-sha, Tokyo.
  22. Kim, I.S. 1997. Illustrated Encyclopedia of Fauna & Flora of Korean Vol. 37 Freshwater Fishes. Ministry of Education, Seoul.
  23. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-Hak Publishing Co., Ltd., Seoul.
  24. Kim, K.S., K.Y. Kim and J.D. Yoon. 2021. Efficiency Comparison of Environmental DNA Metabarcoding of Freshwater Fishes according to Filters, Extraction Kits, Primer Sets and PCR Methods. Korean Journal of Ecology and Environment 54: 199-208. https://doi.org/10.11614/KSL.2021.54.3.199
  25. Knope, M.L. 2013. Phylogenetics of the marine sculpins (Teleostei: Cottidae) of the North American Pacific coast.
  26. Molecular Phylogenetics and Evolution 66: 341-349. KNPS (Korea National Park Service). 2017. Natural resource survey of Gyeongju National Park. Korea National Park Research Institute, Wonju.
  27. KNPSGNPO (Korea National Park Service Gyeongju National Park Office). 2009. Resource monitoring of Gyeongju National Park (1st year). Korea National Park Service Gyeongju National Park Office, Gyeongju.
  28. KNPSGNPO (Korea National Park Service Gyeongju National Park Office). 2010. Resource monitoring of Gyeongju National Park (2nd year). Korea National Park Service Gyeongju National Park Office, Gyeongju.
  29. KNPSGNPO (Korea National Park Service Gyeongju National Park Office). 2011. Resource monitoring of Gyeongju National Park (3rd year). Korea National Park Service Gyeongju National Park Office, Gyeongju.
  30. KNPSGNPO (Korea National Park Service Gyeongju National Park Office). 2012. Resource monitoring of Gyeongju National Park (4th year). Korea National Park Service Gyeongju National Park Office, Gyeongju.
  31. KNPSGNPO (Korea National Park Service Gyeongju National Park Office). 2013. Resource monitoring of Gyeongju National Park (5th year). Korea National Park Service Gyeongju National Park Office, Gyeongju.
  32. KNPSGNPO (Korea National Park Service Gyeongju National Park Office). 2014. Resource monitoring of Gyeongju National Park (6th year). Korea National Park Service Gyeongju National Park Office, Gyeongju.
  33. KNPSGNPO (Korea National Park Service Gyeongju National Park Office). 2015. Resource monitoring of Gyeongju National Park (7th year). Korea National Park Service Gyeongju National Park Office, Gyeongju.
  34. KNPSGNPO (Korea National Park Service Gyeongju National Park Office). 2016. Resource monitoring of Gyeongju National Park (8th year). Korea National Park Service Gyeongju National Park Office, Gyeongju.
  35. Lee, C.J., S.G. An and E.K. Jang. 2023. Analysis of channel changes in mountain streams due to typhoon Hinnamnor flood-a case study on Shingwangcheon and Naengcheon streams in Pohang. Ecology and Resilient Infrastructure 10: 97-106. https://doi.org/10.17820/ERI.2023.10.4.097
  36. Li, D., M. Dorber, V. Barbarossa and F. Verones. 2022. Global characterization factors for quantifying the impacts of increasing water temperature on freshwater fish. Ecological Indicators 142: 109201.
  37. Li, J., C. Fu and G. Lei. 2011. Biogeographical consequences of Cenozoic tectonic events within East Asian margins: a case study of Hynobius biogeography. PLoS One 6: e21506.
  38. Maruyama, S., Y. Isozaki, G. Kimura and M. Terabayashi. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc 6: 121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  39. Natsumeda, T. 2007. Estimates of nocturnal home-range size of the adult Japanese fluvial sculpin, Cottus pollux (Pisces: Cottidae) in relation to bottom topography and sampling intervals. Journal of Ethology 25: 87-93. https://doi.org/10.1007/s10164-006-0206-6
  40. NIBR (National Institute of Biological Resources). 2011. Red data book of endangered fishes in Korea. Ministry of Environment, National Institute of Biological Resources, Incheon.
  41. NIBR (National Institute of Biological Resources). 2019. Red data book of Republic of Korea, Volume 3. Freshwater fishes. Ministry of Environment, National Institute of Biological Resources, Incheon.
  42. Olden, J.D., M.J. Kennard, F. Leprieur, P.A. Tedesco, K.O. Winemiller and E. Garcia-Berthou. 2010. Conservation biogeography of freshwater fishes: recent progress and future challenges. Diversity and Distributions 16: 496-513. https://doi.org/10.1111/j.1472-4642.2010.00655.x
  43. Otofuji, Y.I. 1996. Large tectonic movement of the Japan Arc in late Cenozoic times inferred from paleomagnetism: Review and synthesis. Island Arc 5: 229-249. https://doi.org/10.1111/j.1440-1738.1996.tb00029.x
  44. Piggott, M.P., S.C. Banks, B.T. Broadhurst, C.J. Fulton and M. Lintermans. 2021. Comparison of traditional and environmental DNA survey methods for detecting rare and abundant freshwater fish. Aquatic Conservation: Marine and Freshwater Ecosystems 31: 173-184. https://doi.org/10.1002/aqc.3474
  45. Riaz, M., C. Wittwer, C. Nowak and B. Cocchiararo. 2020. An environmental DNA assay for the detection of the regionally endangered freshwater fish Alburnoides bipunctatus in Germany. Conservation Genetics Resources 12: 41-43. https://doi.org/10.1007/s12686-018-1063-7
  46. Shu, L., A. Ludwig and Z. Peng. 2020. Standards for methods utilizing environmental DNA for detection of fish species. Genes 11: 296.
  47. Taniguchi, S., J. Bertl, A. Futschik, H. Kishino and T. Okazaki. 2021. Waves out of the Korean Peninsula and inter- and intra-species replacements in freshwater fishes in Japan. Genes 12: 303.
  48. Yokoyama, R. and A. Goto. 2005. Evolutionary history of freshwater sculpins, genus Cottus (Teleostei; Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny. Molecular Phylogenetics and Evolution 36: 654-668. https://doi.org/10.1016/j.ympev.2005.06.004
  49. Yoon, J.D., M.H. Jang and G.J. Joo. 2011. Effect of flooding on fish assemblages in small streams in South Korea. Limnology 12: 197-203. https://doi.org/10.1007/s10201-010-0337-x
  50. Yoon, Y.Y. and H.S. Kim. 2004. Effect of typhoon "Rusa" on the natural Yeon-gok stream and coastal ecosystem in the Yeong-dong province. Journal of the Korean Society for Marine Environment & Energy 7: 35-41.
  51. Yoshigou, H. 2010. The morphological variations and distributions of the Cottus pollux species complex (Osteichthyes, Scorpaeniformes, Cottidae) in the Hiroshima Prefecture, Japan. Miscellaneous Reports of the Hiwa Museum for Natural History 51: 255-275.
  52. Yun, B.H., Y.H. Kim, H.S. Han and I.C. Bang. 2024. The characteristics and phylogenetic relationship of two complete mitochondrial genomes of Cottus pollux (scorpaeniformes: cottidae). Mitochondrial DNA Part B: Resources 9: 55-59.
  53. Yun, B.H.,Y.H. Kim, M.S. Sung and I.C. Bang. 2022. First record of the Japanese fluvial sculpin, Cottus pollux (Scorpaeniformes: Cottidae) from Korea. Korean Journal of Ichthyology 34: 277-287.