DOI QR코드

DOI QR Code

Photosynthetic Characteristics of Benthic Microalgae Measured by HPLC and Diving Pulse Amplitude Modulated (PAM) Fluorometry on the Nakdong River Estuary of the Korean Peninsula

HPLC 및 Diving-PAM을 이용한 낙동강 하구 저서미세조류의 광합성 특성

  • Received : 2024.03.06
  • Accepted : 2024.04.17
  • Published : 2024.06.30

Abstract

Daemadeung, located in the estuary of the Nakdong River, is formed by sand dunes and possesses well-developed intertidal flats. This study aimed to investigate the habitat of benthic microalgae, photosynthetic pigments, and photosynthetic efficiency in the intertidal flats of Daemadeung from January to December 2011. The inorganic nitrogen content in the sediment pore water was primarily composed of ammonium, while nitrate + nitrite was dominant in the upper layer water. The concentration of chlorophyll a and fucoxanthin in the sediment surface was significantly higher than the mean of all the sediment layer. The average Fv/Fm of benthic microalgae during the entire survey period was 0.52±0.03, with the highest value (0.61±0.08) observed in February. The rETRmax showed a seasonal trend, being high from spring to early autumn (April to October) and low from winter to early spring (January to March, November, December), with the highest value (153.05±2.30 µmol electrons m-2 s-1) in July and the lowest (38.49±5.17 µmol electrons m-2 s-1) in January. The average Fv/Fm of diurnal microalgae was 0.48±0.03, with the highest value (0.61±0.08) observed at noon. The rETRmax showed a highest peak at noon (54.24±11.35 µmol electrons m-2 s-1) and reached its lowest point at 16:00 (26.17±4.75 µmol electrons m-2 s-1). These findings suggest that the productivity of benthic microalgae varies significantly depending on the survey time and sediment depth. Therefore, to quantify the productivity of benthic microalgae using Diving-PAM, surveys should be conducted based on tidal conditions, and simultaneous pigment analysis of sediment layers should also be performed.

낙동강 하구에 위치한 대마등은 모래톱으로 형성되어 있으며, 잘 발달된 조간대 갯벌을 갖고 있다. 본 연구에서는 2011년 1월부터 12월까지 대마등 갯벌에서 저서미세조류의 서식환경, 광합성 색소와 광합성률을 알아보았다. 퇴적물 공극수의 무기질소는 주로 암모늄염이고, 상부 수의 무기질소는 주로 질산염+아질산염으로 나타났다. Chlorophyll a 및 Fucoxanthin 농도는 퇴적물 표층이, 전체 퇴적층 평균값보다 현저히 높았다. 전체 조사기간 중 저서미세조류의 최대양자수율의 평균값은 0.52±0.03이었으며, 최고값은 2월(0.61±0.08)에 관측되었다. 최대전자전달률은 봄부터 초가을(4월에서 10월까지)까지는 높고 겨울에서 초봄(1월에서 3월 및 11월, 12월)까지는 낮은 계절적인 경향을 보였고, 최고값은 7월, 최저값은 1월에 나타났다. 시간별 저서미세조류의 최대 양자수율의 평균값은 0.48±0.03이었으며, 최고값(0.61±0.08)은 정오에 관측되었다. 최대전자전달률은 정오에 최고 값과 16시에 최저값을 보였다. 이로써 저서미세조류의 생산성은 조사시간 및 퇴적물 깊이에 따라 현저한 차이가 나타나므로 Diving-PAM을 사용하여 저서미세조류의 생산성을 정량화하기 위해서는 물때를 기준으로 조사가 이루어져야 하며, 동시에 퇴적물 층별 색소분석도 수행되어야 할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국립수산과학원 수산과학연구사업(R2024011)의 연구비 지원으로 수행되었습니다.

References

  1. Anderson, L.A. and J.L. Sarmiento. 1994. Redfield ratios of remineralization determined by nutrient data-analysis. Global Biogeochemical Cycles 8: 65-80.
  2. Barranguet, C. and J. Kromkamp. 2000. Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Marine Ecology Progress Series 204: 39-52.
  3. Cadee, G.C. and J. Hegeman. 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Netherlands Journal of Sea Research 8: 260-291.
  4. Choi, T.S. and K.Y. Kim. 2005. The effect of substrate on ecophysiological characteristics of green macroalga Ulva pertusa Kjellman (Chlorophyta). Algae 20: 369-378.
  5. Choy, E.J., S. An and C.K. Kang. 2008. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea). Estuarine Coastal and Shelf Science 78: 215-226.
  6. Chung, B.-C., H.J. Hwang, J.-H. Kim and C.-H. Lee. 2002. Using chlorophyll fluorescence to study phytosynthesis, p. 33-46. In: Recent trends in natural sciences: Photosynthesis and the environmental stress (Lee, C-H., ed.). Pusan National University Press, Busan, Korea.
  7. Consalvey, M., D.M. Paterson and G.J.C Underwood. 2004. The ups and downs of life in a benthic biofilm: Migration of benthic diatoms. Diatom Research 19: 181-202.
  8. Dring, M.J. 1983. The Biology of Marine Plants. Edward Arnold, Baltimore, Maryland. 208pp.
  9. Du, G.Y. and I.K. Chung. 2009. Estimating areal production of intertidal microphytobenthos based on spatio-temporal community dynamics and laboratory measurements. Ocean Science Journal 44: 189-197.
  10. Emerson, R. 1958. The quantum yield of photosynthesis. Annual Review of Plant Physiology 9: 1-24.
  11. Frankenbach, S., J. Ezequiel, S. Plecha, J.W. Goessling, L. Vaz, M. Kuhl, J.M. Dias, N. Vaz and J. Serodio. 2020. Synoptic spatio-temporal variability of the photosynthetic productivity of microphytobenthos and phytoplankton in a tidal estuary. Frontiers in Marine Science 7: 170.
  12. Genty, B., J.M. Briantais and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990: 87-92.
  13. Guarini, J.-M., G.F. Blanchard, C. Bacher, P. Gros, P. Riera, P. Richard, D. Gouleau, R. Galois, J. Prou and P.-G. Sauriau. 1998. Dynamics of spatial patterns of microphytobenthic biomass: inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Oleron Bay (France). Marine Ecology Progress Series 166: 131-141.
  14. Ha, H.J., H. Kim, B.-O. Kwon, J.S. Khim and H.K. Ha. 2020. Influence of tidal forcings on microphytobenthic resuspension dynamics and sediment fluxes in a disturbed coastal environment. Environment International 139: 105743.
  15. Haro, S., B. Jesus, S. Oiry, S. Papaspyrou, M. Lara, C.J. Gonzalez and A. Corzo. 2022. Microphytobenthos spatio-temporal dynamics across an intertidal gradient using Random Forest classification and Sentinel-2 imagery. Science of The Total Environment 804: 149983.
  16. Heip, C.H.R., N.K. Goosen, P.M.J. Herman, J. Kromkamp, J.J. Middelburg and K. Soetaert. 1995. Production and consumption of biological particles in temperature tidal estuaries. Oceanography and Marine Biology: An Annual Review 33: 1-149.
  17. Hong, Y.N. 2001. Photosynthesis, p. 155-172. In: Biology: The science of life (Lee, K.W., H.Y. Gu, U. Kim, J.S. Yang, K.S. Youn, C.L. Choi and Y.N. Hong. eds.). Eulyoo publishing company, Ltd, Seoul, Korea.
  18. Jeffrey, S.W. 1997. Application of pigment methods to oceanography, p. 127-166. In: Phytoplankton pigments in oceanography: guidelines to modern methods (Jeffrey, S.W., R.F.C. Mantoura and S.W. Wright, eds.). UNESCO publishing, Paris.
  19. Jesus, B., C.R. Mendes, V. Brotas and D.M. Paterson. 2006. Effect of sediment type on microphytobenthos vertical distribution: Modelling the productive biomass and improving ground truth measurements. Journal of Experimental Marine Biology and Ecology 332: 60-74.
  20. Jesus, B., V. Brotas, L. Ribeiro, C.R. Mendes, P. Cartaxana and D.M. Paterson. 2009. Adaptations of microphytobenthos assemblages to sediment type and tidal position. Continental Shelf Research 29: 1624-1634.
  21. Kang, C.-K., Y.-W. Lee, E.J. Choy, J.-K. Shin, I.-S. Seo and J.-S. Hong. 2006. Microphytobenthos seasonality determines growth and reproduction in intertidal bivalves. Marine Ecology Progress Series 315: 113-127.
  22. Kim, E.Y., S.M. An, D.H. Choi, H. Lee and J.H. Noh. 2019. Monthly HPLC measurements of pigments from an intertidal sediment of Geunso Bay highlighting variations of biomass, community composition and photo-physiology of microphytobenthos. Journal of the Korean Society of Oceanography 「The Sea」 24: 1-17.
  23. Kim, J.B., W.-C. Lee, S. Hong, J. Shim, J. Park, J. Park and E.G. Lee. 2012. Relationship between environmental characteristics and pigment composition and concentrations of Porphyra yezoensis Ueda in the Southwestern coast of the Korean Peninsula. Korean Journal of Environmental Biology 30: 200-209.
  24. Kim, J.B., W.-C. Lee, H.C. Kim and S. Hong. 2016. An assessment of primary productivity determined by stable isotopes and Diving-PAM in the Pyropia Sea Farms of the Manho (Jindo-Haenam) region on the Southwestern coast of the Korean Peninsula. Korean Journal of Environmental Biology 34: 18-29.
  25. Kim, Y.H. 1996. The biology of marine plants. Houngsal Press, Seoul, Korea. pp. 17-127.
  26. Kromkamp, J.C. and R.M. Forster. 2006. Developments in microphytobenthos primary productivity studies, p. 9-30. In: Functioning of Microphytobenthos in Estuaries: Proceedings of the Colloquium (Kromkamp, J.C., J.F.C. De Brouwer, G.F. Blanchard, R.M. Forster and V. Creach eds.). Amsterdam, Royal Netherlands Academy of Arts and Sciences. 21-23 August 2003.
  27. Kromkamp, J.C., C. Barranguet and J. Peene. 1998. Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Marine Ecology Progress Series 162: 45-55.
  28. Lee, Y.-W., E.-J. Choy, Y.-S. Kim and C.-K. Kang. 2009. Seasonal variations of microphytobenthos in sediments of the estuarine muddy sandflat of Gwangyang bay: HPLC pigment analysis. Journal of the Korean Society of Oceanography 「The Sea」 14: 48- 55.
  29. Lee, Y.-W., M.O. Park, J.-H. Yoon and S.-B. Hur. 2012. Temporal and spatial variation of microalgal biomass and community structure in seawater and surface sediment of the Gomso bay as determined by chemotaxonomic analysis. Journal of the Korean Society of Oceanography 「The Sea」 17: 87-94.
  30. Longphuirt, S.N., J.H. Lim, A. Leynaert, P. Claquin, E.J. Choy, C.K. Kang and S. An. 2009. Dissolved inorganic nitrogen uptake by intertidal microphytobenthos: nutrient concentrations, light availability and migration. Marine Ecology Progress Series 379: 33-44.
  31. Macintyre, H.L., R.J. Geider and D.C. Miller. 1996. Microphytobenthos: the ecological role of the "secret garden" of unvegetated shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19: 186-201. 
  32. Mcintire, C.D. and B.L. Wulff. 1969. A laboratory method for the study of marine benthic diatoms. Limnology Oceanography 14: 667-678.
  33. Meleder, V., L. Barille, Y. Rince, M. Morancais, P. Rosa and P. Gaudin. 2005. Spatio-temporal changes in microphytobenthos structure analysed by pigment composition in a macrotidal flat (Bourgneuf Bay, France). Marine Ecology Progress Series 297: 83-99.
  34. Meyer, A.A., M. Tackx and N. Daro. 2000. Xanthophyll cycling in Phaeocystis globosa and Thalassiosira sp.: a possible mechanism for species succession. Journal of Sea Research 43: 273-384.
  35. MOF. 2024. https://www.mof.go.kr/statPortal/main/portalMain.do
  36. Montani, S., P. Magni and N. Abe. 2003. Seasonal and interannual patterns of intertidal microphytobenthos in combination with laboratory and areal production estimates. Marine Ecology Progress Series 249: 79-91.
  37. Murray, N.J., S.R. Phinn, M. DeWitt, R. Ferrari, R. Johnston, M.B. Lyons, N. Clinton, D. Thau and R.A. Fuller. 2019. The global distribution and trajectory of tidal flats. Nature 565: 222-225.
  38. Oh, S.J., C.H. Moon and M.O. Park. 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum tidal flat, west coast of Korea. Journal of the Korean Fisheries Society 37: 215-225.
  39. Olaizola, M. and H.Y. Yamamoto. 1994. Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros-muelleri (Bacillariophyceae). Journal of Phycology 20: 606-612.
  40. Parsons, T.R., Y. Maita and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergammon Press, New York. 173 pp.
  41. Ralph, P.J., R. Gademann and W.C. Dennison. 1998. In situ seagrass photosynthesis measured using a submersible pulse amplitude modulated fluorometer. Marine Biology 132: 367-373.
  42. Schreiber, U. 2004. Pulse-amplitude-modulation (PAM) fluormetry and saturation pulse method: an overview, p. 279-319. In: Chlorophyll fluorescence: a signature of photosynthesis (Papageorgiou, G.C. and Govindjee. eds.). Springer, Dordrecht, The Netherlands.
  43. Stauber, J.L. and S.W. Jeffrey. 1988. Photosynthetic pigments in fifty-one species of marine diatoms. Journal of Phycology 24: 158-172.
  44. Taiz, L. and E. Zeiger. 1998. Plant Physiology. 2nd ed. Sunderland: Sinauer Associares, Inc. Publishers.
  45. Taylor, W.R. 1964. Light and photosynthesis in intertidal benthic diatoms. Helgolander Wissenschaftliche Meeresuntersuchungen 10: 29-37.
  46. Underwood, G.J.C. and J. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29: 93-153.
  47. Vieira, S., L. Ribeiro, B. Jesus, P. Cartaxana and J.M. Silva. 2013. Photosynthesis assessment in microphytobenthos using conventional and imaging pulse amplitude modulation fluorometry. Photochemistry and Photobiology 89: 97-102.
  48. Wright, S.W., S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjornland, D. Repeta and N. Welschmeyer. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 77: 183-196.
  49. Yoo, M.H. and J.K. Choi. 2005. Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea. Journal of the Korean Society of Oceanography 「The Sea」 10: 8-18.
  50. Young, A.J. and H.A. Frank. 1996. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. Journal of Photochemistry and Photobiology B: Biology 36: 3-15.
  51. Yun, M.-S., C.-H. Lee and I.-K. Chung. 2009. Influence of temperature on the photosynthetic responses of benthic diatoms: fluorescence based estimates. Journal of the Korean Society of Oceanography 「The Sea」 14: 118-126.