DOI QR코드

DOI QR Code

Beneficial effect of metformin on tolerance to analgesic effects of sodium salicylate in male rats

  • Elham Akbari (Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences) ;
  • Dawood Hossaini (Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences) ;
  • Farimah Beheshti (Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences) ;
  • Mahdi Khorsand Ghaffari (Department of Physiology, School of Medicine, Arak University of Medical Sciences) ;
  • Nastran Roshd Rashidi (Department of Physiology, School of Medicine, Arak University of Medical Sciences) ;
  • Masoumeh Gholami (Department of Physiology, School of Medicine, Arak University of Medical Sciences)
  • 투고 : 2024.02.20
  • 심사 : 2024.04.07
  • 발행 : 2024.07.01

초록

Background: Tolerance to the analgesic effects of opioids and non-steroidal anti-inflammatory drugs (NSAIDs) is a major concern for relieving pain. Thus, it is highly valuable to find new pharmacological strategies for prolonged therapeutic procedures. Biguanide-type drugs such as metformin (MET) are effective for neuroprotection and can be beneficial for addressing opioid tolerance in the treatment of chronic pain. It has been proposed that analgesic tolerance to NSAIDs is mediated by the endogenous opioid system. According to the cross-tolerance between NSAIDs, especially sodium salicylate (SS), and opiates, especially morphine, the objective of this study was to investigate whether MET administration can reduce tolerance to the anti-nociceptive effects of SS. Methods: Fifty-six male Wistar rats were used in this research (weight 200-250 g). For induction of tolerance, SS (300 mg/kg) was injected intraperitoneally for 7 days. During the examination period, animals received MET at doses of 50, 75, or 100 mg/kg for 7 days to evaluate the development of tolerance to the analgesic effect of SS. The hot plate test was used to evaluate the drugs' anti-nociceptive properties. Results: Salicylate injection significantly increased hot plate latency as compared to the control group, but the total analgesic effect of co-treatment with SS + Met50 was stronger than the SS group. Furthermore, the effect of this combination undergoes less analgesic tolerance over time. Conclusions: It can be concluded that MET can reduce the analgesic tolerance that is induced by repeated intraperitoneal injections of SS in Wister rats.

키워드

참고문헌

  1. Pan Y, Sun X, Jiang L, Hu L, Kong H, Han Y, et al. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation. J Neuroinflammation 2016; 13: 294.
  2. Deciga-Campos M, Lopez UG, Reval MI, Lopez-Munoz FJ. Enhancement of antinociception by co-administration of an opioid drug (morphine) and a preferential cyclooxygenase-2 inhibitor (rofecoxib) in rats. Eur J Pharmacol 2003; 460: 99-107.
  3. Matsuda M, Huh Y, Ji RR. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth 2019; 33: 131-9.
  4. Owoyele BV, Bakare AO, Olaseinde OF, Ochu MJ, Yusuff AM, Ekebafe F, et al. Corrigendum: synergistic interaction between acetaminophen and L-carnosine improved neuropathic pain via NF-κB pathway and antioxidant properties in chronic constriction injury model. Korean J Pain 2022; 35: 488. Erratum for: Korean J Pain 2022; 35: 271.
  5. Pernia-Andrade AJ, Tortorici V, Vanegas H. Induction of opioid tolerance by lysine-acetylsalicylate in rats. Pain 2004; 111: 191-200.
  6. Wideman GL, Keffer M, Morris E, Doyle RT Jr, Jiang JG, Beaver WT. Analgesic efficacy of a combination of hydrocodone with ibuprofen in postoperative pain. Clin Pharmacol Ther 1999; 65: 66-76.
  7. Sunshine A, Olson NZ, O'Neill E, Ramos I, Doyle R. Analgesic efficacy of a hydrocodone with ibuprofen combination compared with ibuprofen alone for the treatment of acute postoperative pain. J Clin Pharmacol 1997; 37: 908-15.
  8. Christie MJ, Vaughan CW, Ingram SL. Opioids, NSAIDs and 5-lipoxygenase inhibitors act synergistically in brain via arachidonic acid metabolism. Inflamm Res 1999; 48: 1-4.
  9. Tsiklauri N, Gurtskaia G, Tsagareli M. Study of non-opioid analgesics tolerance in young and adult rats. Georgian Med News 2008; 158: 40-4.
  10. Trujillo KA, Akil H. Opiate tolerance and dependence: recent findings and synthesis. New Biol 1991; 3: 915-23.
  11. Bao W, Luo Y, Wang D, Li J, Wu X, Mei W. Sodium salicylate modulates inflammatory responses through AMP-activated protein kinase activation in LPS-stimulated THP-1 cells. J Cell Biochem 2018; 119: 850-60.
  12. LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev 2021; 42: 77-96.
  13. Liu SN, Liu Q, Sun SJ, Hou SC, Wang Y, Shen ZF. [Metformin ameliorates β-cell dysfunction by regulating inflammation production, ion and hormone homeostasis of pancreas in diabetic KKAy mice]. Yao Xue Xue Bao 2014; 49: 1554-62. Chinese.
  14. Zhou C, Sun R, Zhuang S, Sun C, Jiang Y, Cui Y, et al. Metformin prevents cerebellar granule neurons against glutamate-induced neurotoxicity. Brain Res Bull 2016; 121: 241-5.
  15. Bonnefont-Rousselot D, Raji B, Walrand S, Gardes-Albert M, Jore D, Legrand A, Peynet J, et al. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 2003; 52: 586-9.
  16. Buldak L, Machnik G, Buldak RJ, Labuzek K, Boldys A, Okopien B. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling. Naunyn Schmiedebergs Arch Pharmacol 2016; 389: 1103-15.
  17. Houser VP, Pare WP. Analgesic potency of sodium salicylate, indomethacin, and chlordiazepoxide as measured by the spatial preference technique in the rat. Psychopharmacologia 1973; 32: 121-31.
  18. Sadegh M, Fathollahi Y, Naghdi N, Semnanian S. Morphine deteriorates spatial memory in sodium salicylate treated rats. Eur J Pharmacol 2013; 704: 1-6.
  19. Afshari K, Dehdashtian A, Haddadi NS, Haj-Mirzaian A, Iranmehr A, Ebrahimi MA, et al. Anti-inflammatory effects of Metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: introduction of an alternative therapy. Spinal Cord 2018; 56: 1032-41.
  20. Pecikoza UB, Tomic MA, Micov AM, Stepanovic-Petrovic RM. Metformin synergizes with conventional and adjuvant analgesic drugs to reduce inflammatory hyperalgesia in rats. Anesth Analg 2017; 124: 1317-29.
  21. Tsiklauri N, Pirkulashvili N, Nozadze I, Nebieridze M, Gurtskaia G, Abzianidze E, et al. Antinociceptive tolerance to NSAIDs in the anterior cingulate cortex is mediated via endogenous opioid mechanism. BMC Pharmacol Toxicol 2018; 19: 2.
  22. Giglio CA, Defino HL, da-Silva CA, de-Souza AS, Del Bel EA. Behavioral and physiological methods for early quantitative assessment of spinal cord injury and prognosis in rats. Braz J Med Biol Res 2006; 39: 1613-23.
  23. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60: 1577-85.
  24. Asiedu MN, Han C, Dib-Hajj SD, Waxman SG, Price TJ, Dussor G. The AMPK activator A769662 blocks voltage-gated sodium channels: discovery of a novel pharmacophore with potential utility for analgesic development. PLoS One 2017; 12: e0169882.
  25. Baeza-Flores GDC, Guzman-Priego CG, Parra-Flores LI, Murbartian J, Torres-Lopez JE, Granados-Soto V. Metformin: a prospective alternative for the treatment of chronic pain. Front Pharmacol 2020; 11: 558474.
  26. Russe OQ, Moser CV, Kynast KL, King TS, Stephan H, Geisslinger G, et al. Activation of the AMP-activated protein kinase reduces inflammatory nociception. J Pain 2013; 14: 1330-40.
  27. Bullon P, Alcocer-Gomez E, Carrion AM, Marin-Aguilar F, Garrido-Maraver J, Roman-Malo L, et al. AMPK phosphorylation modulates pain by activation of NLRP3 inflammasome. Antioxid Redox Signal 2016; 24: 157-70.
  28. Augusto PSA, Braga AV, Rodrigues FF, Morais MI, Dutra MMGB, Batista CRA, et al. Metformin antinociceptive effect in models of nociceptive and neuropathic pain is partially mediated by activation of opioidergic mechanisms. Eur J Pharmacol 2019; 858: 172497.
  29. Riddle M. Combining sulfonylureas and other oral agents. Am J Med 2000; 108 Suppl 6a: 15S-22S.
  30. Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 2005; 107: 139-54.
  31. Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases [correction of cycloxygenases] in the spinal cord. Prog Neurobiol 2001; 64: 327-63. Erratum in: Prog Neurobiol 2001; 65: 609.
  32. Vanegas H, Tortorici V. Opioidergic effects of nonopioid analgesics on the central nervous system. Cell Mol Neurobiol 2002; 22: 655-61.
  33. Elberry AA, Sharkawi SMZ, Wahba MR. Antinociceptive and anti-inflammatory effects of N-acetylcysteine and verapamil in Wistar rats. Korean J Pain 2019; 32: 256-63.
  34. Tsiklauri N, Viatchenko-Karpinski V, Voitenko N, Tsagareli MG. Non-opioid tolerance in juvenile and adult rats. Eur J Pharmacol 2010; 629: 68-72.
  35. Shirooie S, Esmaeili J, Sureda A, Esmaeili N, Mirzaee Saffari P, Yousefi-Manesh H, et al. Evaluation of the effects of metformin administration on morphine tolerance in mice. Neurosci Lett 2020; 716: 134638.
  36. Ji RR, Gereau RW 4th, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev 2009; 60: 135-48.
  37. Lisi L, Aceto P, Navarra P, Dello Russo C. mTOR kinase: a possible pharmacological target in the management of chronic pain. Biomed Res Int 2015; 2015: 394257.