DOI QR코드

DOI QR Code

전자 후방 산란 분석기술과 결정소성 유한요소법을 이용한 전해 도금 구리 박막의 결정 방위에 따른 소성 변형 거동 해석

Analysis of Plastic Deformation Behavior according to Crystal Orientation of Electrodeposited Cu Film Using Electron Backscatter Diffraction and Crystal Plasticity Finite Element Method

  • 박현 (동아대학교 신소재공학과) ;
  • 신한균 (동아대학교 신소재공학과) ;
  • 김정한 (동아대학교 신소재공학과) ;
  • 이효종 (동아대학교 신소재공학과)
  • Hyun Park (Department of Materials Science and Engineering, Dong-A University) ;
  • Han-Kyun Shin (Department of Materials Science and Engineering, Dong-A University) ;
  • Jung-Han Kim (Department of Materials Science and Engineering, Dong-A University) ;
  • Hyo-Jong Lee (Department of Materials Science and Engineering, Dong-A University)
  • 투고 : 2024.06.10
  • 심사 : 2024.06.30
  • 발행 : 2024.06.30

초록

구리 전해 도금 기술은 반도체 패키징 및 반도체, 이차 전지 등 다양한 마이크로 전자 산업 분야에서 구리 박막 또는 배선의 제조를 위해 사용되고 있으며, 각 응용처에서 요구하는 특성을 획득하기 위해 이들 구리 박막 또는 배선의 미세조직을 제어하고자 광범위한 연구가 이루어지고 있다. 본 연구에서는 기계적 물성이 우수한 이차 전지용 구리 박막을 제조하기 위해, 이차 전지 제조 공정 중 기계적 또는 열적 하중에 의한 박막의 소성 변형 시 박막을 구성하는 결정립들의 결정학적 이방성의 영향성을 조사하였다. 이를 위해, 상이한 집합조직이 발달한 2 종류의 10 ㎛ 두께 전해 도금 구리 박막에 대해 전자 후방 산란 (electron backscattering diffraction or EBSD) 기술을 이용하여 표면 또는 단면의 결정 방위 지도를 측정하였고, 이들을 초기 입력 정보로 한 결정소성 유한요소해석을 통해 1축 인장 변형에 따른 박막 내부의 국부적 변형 거동을 분석하였다. 이를 통해, 인장 변형률의 증가에 따른 박막 내 소성 변형 불균질성과 집합조직의 변화를 추적하였고, 불균질한 소성 변형을 일으키는 결정립의 결정 방위를 확인하였다.

Copper electrodeposition technology is essential for producing copper films and interconnects in the microelectronics industries including semiconductor packaging, semiconductors and secondary battery, and there are extensive efforts to control the microstructure of these films and interconnects. In this study, we investigated the influence of crystallographic orientation on the local plastic deformation of copper films for secondary batteries deformed by uniaxial tensile load. Crystallographic orientation maps of two electrodeposited copper films with different textures were measured using an electron backscatter diffraction (EBSD) system and then used as initial conditions for crystal plasticity finite element analysis to predict the local plastic deformation behavior within the films during uniaxial tension deformation. Through these processes, the changes of the local plastic deformation behavior and texture of the films were traced according to the tensile strain, and the crystal orientations leading to the inhomogeneous plastic deformation were identified.

키워드

과제정보

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임 ('20015767').

참고문헌

  1. P. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, and E. Kendrick, "A review of current collectors for lithium-ion batteries", J. Power Sources, 485, 229321 (2021).
  2. H. Park, S.-J. Kim, Y.-j Song, H.-K. Shin, J.-B. Jeon, S.-D. Kim, J.-H. Kim, and H.-J. Lee, "Microstructure-controlled Electrodeposition of Mechanically Reliable Double-layered Thin Foils for Secondary Batteries", Met. Mater. Int., 30, 1430-1439 (2024).
  3. S.-J. Kim, H.-K. Shin, H. Park, and H.-J. Lee, "A Study on The Effect of Current Density on Copper Plating for PCB through Electrochemical Experiments and Calculations", J. Microelectron. Packag. Soc., 29(1), 49-54 (2022).
  4. F. Liu, A. Kubo, C. Nair, T. Ando, R. Furuya, S. Dwarakanath, V. Sundaram, and R. R. Tummala, "Next Generation Panel-Scale RDL with Ultra Small Photo Vias and Ultra-fine Embedded Trenches for Low Cost 2.5D Interposers and High Density Fan-Out WLPs", IEEE 66th Electronic Components and Technology Conference (ECTC), 1515-1521 (2016).
  5. C. H. Yu, L. J. Yen, C. Y. Hsieh, J. S. Hsieh, V. C. Y. Chang, C. H. Hsieh, C. S. Liu, C. T. Wang, K.-C. Yee, and D. C. H. Yu, "High Performance, High Density RDL for Advanced Packaging", 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 587-593 (2018).
  6. K. Son, G. Kim, and Y.-B. Park, "Effects of Dielectric Curing Temperature and T/H Treatment on the Interfacial Adhesion Energies of Ti/PBO for Cu RDL Applications of FOWLP", J. Microelectron. Packag. Soc., 30(2), 52-59 (2023).
  7. S.-H. Kim, H.-J. Lee, D. Josell, and T. P. Moffat, "Bottom-up Cu filling of annular through silicon vias: Microstructure and texture", Electrochimica Acta, 335, 135612 (2020).
  8. E.-S. Jang, E.-C. Noh, S.-J. Na, and J.-W. Yoon, "Properties of Cu Pillar Bump Joints during Isothermal Aging", J. Microelectron. Packag. Soc., 31(1), 35-42 (2024).
  9. Y. Kim, S. W. Park, M. S. Jung, J. H. Kim, and J. K. Park, "A Review on the Bonding Characteristics of SiCN for Low-temperature Cu Hybrid Bonding", J. Microelectron. Packag. Soc., 30(4), 8-16 (2023).
  10. R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, "Copper Metallization for High Performance Silicon Technology", Annu. Rev. Mater. Sci., 30, 229-262 (2000).
  11. E. T. Ogawa, J. McPherson, J. A. Rosal, K. J. Dickerson, T.-C. Chiu, L. Y. Tsung, M. K. Jain, T. Bonifield, J. C. Ondrusek, and W. R. McKee, "Stress-Induced Voiding Under Vias Connected To Wide Ch Metal Leads", 40th Annual IEEE International Reliability Physics Symposium, 312-321 (2002).
  12. C. S. Hau-Riege, "An introduction to Cu electromigration", Microelectronics Reliability, 44(2), 195-205 (2004).
  13. J.-M. Paik, H. Park, Y.-C. Joo, and K.-C. Park, "Effect of dielectric materials on stress-induced damage modes in damascene Cu lines", J. Appl. Phys., 97(10), 104513 (2005).
  14. H. Park, M. Kraatz, J. Im, B. Kastenmeier, and P. S. Ho, "Simulation of Electrical and Mechanical Properties of Air-Bridge Cu Interconnects", 2006 IEEE International Reliability Physics Symposium Proceedings, 677-678 (2006).
  15. H. Park, S.-J. Hwang, and Y.-C. Joo, "Stress-induced surface damage and grain boundary characteristics of sputtered and electroplated copper thin films", Acta Materialia, 52(8), 2435-2440 (2004).
  16. H. Park, S.-H. Kim, W.-J. Lee, J.-W. Ha, S.-J. Kim, and H.-J. Lee, "Effect of Wire-Drawing Process Conditions on Secondary Recrystallization Behavior During Annealing in High-Purity Copper Wires", Met. Mater. Int., 27(7), 2220-2229 (2021).
  17. H.-K. Shin, S.-H. Kim, H. Park, and H.-J. Lee, "Multilayer Laminated Copper Electrodeposits and Their Mechanical Properties", J. Electrochem. Soc., 169(10), 102502 (2022).
  18. H. Park, W.-J. Lee, J.-H. Son, H.-K. Shin, S.-K. Hong, and H.-J. Lee, "Effects of Pilger Rolling and Heat Treatment on Microstructure and Corrosion Resistance of Ag-Electroplated 304 Stainless Steel Tubes", Met. Mater. Int., 28(8), 1881-1889 (2022).
  19. F. J. Humphreys and M. Hatherly, "Recrystallization and Related Annealing Phenomena", 1-220, Pergamon Press, Elsevier Science Ltd., Oxford, UK (1995).
  20. C. V. Thompson, "Structure Evolution during Processing of Polycrystalline films", Annu. Rev. Mater. Sci., 30, 159-190 (2000).
  21. D. N. Lee, "Texture and Related Phenomena", 2nd edn., 280-484, The Korean Institute of Metals and Materials, Korea (2014).
  22. S. R. Kalindindi, "Polycrystal Plasticity: Constitutive Modeling and deformation processing", in Ph.D. Thesis, 5-185, Massachusetts Institute of Technology, Cambridge, UK (1992).
  23. F. Roters, P. Eisenlohr, T. R. Bieler, and D. Raabe, "Crystal Plasticity Finite Element Methods in Materials Science and Engineering", 13-91, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
  24. H. Park and D. N. Lee, "Effects of Shear Strain and Drawing Pass on the Texture Development in Copper Wire", Mater. Sci. Forum, 408-412, 637-642 (2002).