DOI QR코드

DOI QR Code

Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment

열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구

  • Boram Kim (Recycle Research Lab, Samsung SDI) ;
  • Hee-Seon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Dae-Weon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE))
  • 김보람 (삼성SDI 리사이클연구Lab) ;
  • 김희선 (고등기술연구원 신소재공정센터) ;
  • 김대원 (고등기술연구원 신소재공정센터)
  • Received : 2024.05.10
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

Globally, the demand for electric vehicles (EVs) is surging due to carbon-neutral strategies aimed at decarbonization. Consequently, the demand for lithium-ion batteries, which are essential components of EVs, is also rising, leading to an increase in the generation of spent batteries. This has prompted research into the recycling of spent batteries to recover valuable metals. In this study, we aimed to selectively leach and recover lithium from the cathode material of spent LFP batteries. To enhance the reaction surface area and reactivity, the binder in the cathode material powder was removed, and the material was subjected to heat treatment in both atmospheric and nitrogen environments across various temperature ranges. This was followed by a mechanochemical process for aqueous leaching. Initially, after heat treatment, the powder was converted into a soluble lithium compound using sodium persulfate (Na2S2O8) in a mechanochemical reaction. Subsequently, aqueous leaching was performed using distilled water. This study confirmed the changes in the characteristics of the cathode material powder due to heat treatment. The final heat treatment in a nitrogen atmosphere resulted in a lithium leaching efficiency of approximately 100% across all temperature ranges.

전 세계적으로 탄소 중립 전략에 따른 탈탄소화와 관련하여 전기자동차의 수요가 급증하고 있다. 전기자동차의 주요 부품인 리튬이온 배터리의 수요 또한 급증하게 되었고, 이는 폐배터리의 발생으로 이어진다. 이에 폐배터리를 재활용하여 유가 금속을 회수하기 위한 연구가 수행되고 있으며, 본 연구에서는 폐LFP 배터리의 양극재로부터 리튬을 선택적으로 선침출 및 회수하고자 하였다. 양극재 분말 내 포함된 바인더를 제거하여 반응 표면적 증대 및 반응성을 높이기 위하여 대기 및 질소 분위기 그리고 다양한 온도 범위에서 열처리하였고, 이후 기계화학적(Mechanochemical) 공정을 통하여 수침출 하였다. 먼저, 열처리 후 분말을 과황산나트륨(Na2S2O8)과 기계화학적 반응을 이용하여 가용성 리튬화합물로 전환하였고, 이후 증류수를 이용하여 수침출 하였다. 본 연구에서 열처리를 통한 양극재 분말의 특성 변화를 확인하였고, 최종 질소 분위기에서 열처리하여 모든 온도 범위에서 리튬의 침출율은 약 100%로 선침출할 수 있었다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 연구 과제입니다(재생자원의 저탄소 산업 원료화 기술개발 사업 No. 20229A10100100).

References

  1. Liu, K., Wang, M., Zhang, Q., et al., 2023 : A perspective on the recovery mechanisms of spent lithium iron phosphate cathode materials in different oxidation environments, Journal of Hazardous Materials, 445, pp.130502.
  2. Shentu, H., Xiang, B., Cheng, Y. J., et al., 2021 : A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery, Environmental Technology & Innovation, 23, pp.101569.
  3. Chen, X., Li, S., Wang, Y., et al., 2021 : Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation, Waste Management, 136, pp.67-75. https://doi.org/10.1016/j.wasman.2021.09.026
  4. Chen, Y., Kang, Y., Zhao, Y., et al., 2021 : A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, Journal of Energy Chemistry, 59, pp.83-99. https://doi.org/10.1016/j.jechem.2020.10.017
  5. Roy, J. J., Cao, B. and Madhavi, S., 2021 : A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282, pp.130944.
  6. Li, R., Li, Y., Dong, L., et al., 2023 : Study on selective recovery of lithium ions from lithium iron phosphate powder by electrochemical method, Separation and Purification Technology, 310, pp.123133.
  7. Zhao, T., Li, W., Traversy, M., et al., 2024 : A review on the recycling of spent lithium iron phosphate batteries, Journal of Environmental Management, 351, pp.119670.
  8. Gong, R., Li, C., Meng, Q., et al., 2022 : A sustainable closed-loop method of selective oxidation leaching and regeneration for lithium iron phosphate cathode materials from spent batteries, Journal of Environmental Management, 319, pp.115740.
  9. Kumawat, S., Singh, D. and Saini, A., 2023 : Recycling of spent lithium-iron phosphate batteries: toward closing the loop, Materials and Manufacturing Processes, 38(2), pp. 135-150.
  10. Zhang, Q., Fan, E., Lin, J., et al., 2023 : Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO4 batteries, Journal of Hazardous Materials, 443, pp.130160.
  11. Kim, H. S., Kim, D. W., Chae, B. M., et al., 2023 : A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder, Resources Recycling, 32(3), pp.9-17.
  12. Natarajan, S. and Aravindan, V., 2018 : Burgeoning prospects of spent lithium-ion batteries in multifarious application, Advanced Energy Materials, 8(33), pp.1802303.
  13. Yao, Y., Zhu, M., Zhao, Z., et al., 2018 : Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review, ACS Sustain. Chem. Eng., 6, pp.13611-13627. https://doi.org/10.1021/acssuschemeng.8b03545
  14. Zeng, X., Li, J. and Liu, L., 2015 : Solving spent lithium-ion battery problems in China: Opportunities and challenges, Renew. Sust. Energ. Rev., 52, pp.1759-1767. https://doi.org/10.1016/j.rser.2015.08.014
  15. Lv, W., Wang, Z., Cao, H., et al., 2018 : A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustain. Chem. Eng., 6, pp.1504-1521. https://doi.org/10.1021/acssuschemeng.7b03811
  16. Wang, M., Liu, K., Dutta, S., et al., 2022 : Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects, Renewable and Sustainable Energy Reviews, 163, pp.112515.
  17. Kim, H. S., Kim, B. R. and Kim, D. W. 2024 : Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials, Clean Technol., 30(1), pp.28-36.
  18. Liang, Z., Peng, G., Hu, J., et al., 2022 : Mechanochemically assisted persulfate activation for the facile recovery of metals from spent lithium ion batteries, Waste Management, 150, pp.290-300. https://doi.org/10.1016/j.wasman.2022.07.014
  19. Jie, Y., Yang, S., Li, Y., et al., 2020 : Oxidizing roasting behavior and leaching performance for the recovery of spent LiFePO4 batteries, Minerals, 10(11), pp.949.
  20. Liu, G., Liu, Z., Gu, J., et al., 2023 : A facile new process for the efficient conversion of spent LiFePO4 batteries via (NH4)2S2O8-assisted mechanochemical activation coupled with water leaching, Chemical Engineering Journal, 471, pp.144265.
  21. Kim, H. S., Kim, D. W., Jang, D. H., et al., 2022 : A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode, Resources Recycling, 31(4), pp.40-48. https://doi.org/10.7844/kirr.2022.31.4.40
  22. Kim, B. R., Kim, H. S. and Kim, D. W., 2023 : Selective Recovery of Lithium from the Spent LFP Cathode Materials by Mechanochemical Method, Resources Recycling, 32(4), pp.47-54.
  23. Wu, X., Xing, Z., Hu, Y., et al., 2019 : Effects of functional binders on electrochemical performance of graphite anode in potassium-ion batteries, Ionics, 25, pp.2563-2574. https://doi.org/10.1007/s11581-018-2763-4
  24. Dong, H., Xiao, K., Tang, X., et al., 2016 : Preparation and characterization of polyurethane (PU)/polyvinylidene fluoride (PVDF) blending membrane, Desalination and Water Treatment, 57(8), pp.3405-3413. https://doi.org/10.1080/19443994.2014.988659
  25. Jie, Y., Yang, S., Li, Y., et al., 2020 : Oxidizing roasting behavior and leaching performance for the recovery of spent LiFePO4 batteries, Minerals, 10(11), pp.949.
  26. Nagamine, K., Oh-Ishi, K., Honma, T., et al., 2012 : Formation mechanism of LiFePO4 in crystallization of lithium iron phosphate glass particles, Journal of the Ceramic Society of Japan, 120(1401), pp.193-198.  https://doi.org/10.2109/jcersj2.120.193