DOI QR코드

DOI QR Code

삼차신경절의 나트륨 채널 조절을 통한 치수염 통증 완화 효과

Pulpitis pain relief by modulating sodium channels in trigeminal ganglia

  • Kyung-Hee Lee (Department of Dental Hygiene, Dongseo University)
  • 투고 : 2024.05.13
  • 심사 : 2024.06.05
  • 발행 : 2024.06.30

초록

연구목적: 치수는 신경과 혈관을 포함하고 있는 부위로 다양한 자극이나 세균에 의해 염증이 생기면 이를 치수염이라고 한다. 치수염은 말초 신경조직 변화와 심한 통증을 유발하는 질환으로 만성적 통증을 유발하나, 삼차신경절의 신경세포 활성화와 특정 나트륨 채널(Nav1.7) 발현 사이의 관계는 잘 알려져 있지 않다. 이에 본 연구에서는 실험적으로 유도된 치수염이 말초신경에서 Nav1.7 나트륨 채널의 발현을 활성화시켜, 삼차신경절의 뉴런을 활성화함으로써 통증을 유발한다는 사실을 발견하고 이를 조절하는 신호기전을 규명하고자 하였다. 연구방법: 실험동물(Male C57BL/6 생쥐, 6주, 20-25 g)의 상악 제1대구치 치수에 AITC를 처리하여 급성 치수염을 유발하고, 3일 후 실시간 광영상 이미지를 이용하여 삼차신경절의 뉴런 활성화를 측정 및 비교 분석하였다. 단백질 분석을 통해 뇌간(SpVc)에서 치수염 통증유발 신호조절기전에 관여하는 여러가지 단백질들(p-ERK, c-FOS, TRPA1, p-CRMP2)의 발현을 관찰하였다. 연구결과: 시공간적 광영상 이미지를 통해 삼차신경절의 뉴런세포들은 대조군과 비교 시 급성 치수염 모델에서 흥분성 활성화가 유도되어 신경학적 변화가 일어남을 관찰하였다. 또한 조직학 및 분자생물학적 결과를 통해 치수염으로 인한 특정 나트륨 채널(Nav1.7)의 증가가 통증을 유발한다는 사실을 확인하였다. 또한, ProTxII(Nav1.7의 선택적 억제 약물) 처리를 통해 뉴런의 과흥분성 활성이 억제됨에 따라, 치수염이 삼차신경절에서 나트륨 채널(Nav1.7)의 증가를 유도하고 이러한 특정 나트륨 채널을 효과적으로 제어하면 치수염의 통증을 줄이는 방법이 될 것이라 생각된다. 결론: 본 연구의 결과를 통해 과 발현된 특정 나트륨 채널(Nav1.7)을 억제하면 삼차신경절에서 통각 신호 처리를 조절하고 치수염에 의해 유발되는 통증을 효과적으로 조절할 수 있음을 시사한다.

Objectives: The pulp is the center of the tooth containing nerves and blood vessels. The condition in which the pulp becomes inflamed due to caries or periodontitis is called pulpitis. Pulpitis is a difficult-to-treat disease and causes peripheral nerve tissue changes and severe pain; however, the relationship between neuronal activity and voltage-gated sodium channel 1.7 (Nav1.7) expression in the trigeminal ganglion (TG) during pulpitis has not been well studied. In this study, we found that experimentally induced pulpitis activates Nav1.7 expression in the periphery, leading to neuronal overexpression in the TG. Thus, we sought to identify ways to regulate this process. Methods: Acute pulpitis was induced in rat maxillary molars by treating the pulp with allyl isothiocyanate (AITC). Three days later, in vivo optical imaging was used to record and compare neural activities in the TG. Western blotting was used to identify molecular changes in terms of the expression of extracellular signal-regulated kinase (ERK), c-Fos, transient receptor potential ankyrin 1 (TRPA1), and collapsin response mediator protein-2 (CRMP2) in the brain stem. Results: The results confirmed the neurological changes in the TGs of the pulpitis model, and histological and molecular biological evidence confirmed that increased Nav1.7 expression induced by pulpitis leads to pain. Furthermore, selective inhibition of Nav1.7 resulted in changes in neural activity, suggesting that pulpitis induces increased Nav1.7 expression, and that effective control of Nav1.7 could potentially reduce pain. Conclusions: The inhibition of overexpressed Nav1.7 channels may modulate nociceptive signal processing in the brain and effectively control pain associated with pulpitis.

키워드

과제정보

This study was supported by Dongseo University, 'Dongseo Frontier Project' Research Fund of 2023.

참고문헌

  1. Aminoshariae A, Kulild JC, Donaldson M, Hersh EV. Evidence-based recommendations for analgesic efficacy to treat pain of endodontic origin: a systematic review of randomized controlled trials. J Am Dent Assoc 2016;147(10):826-39. https://doi.org/10.1016/j.adaj.2016.05.010
  2. Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The role of transient receptor potential (TRP) channels in the transduction of dental pain. Int J Mol Sci 2019;20(3):526. https://doi.org/10.3390/ijms20030526
  3. Byers M, Narhi M. Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit Rev Oral Bio Med 1999;10(1):4-39. https://doi.org/10.1177/10454411990100010101
  4. Sharif-Naeini R. Role of mechanosensitive ion channels in the sensation of pain. J Neural Transm 2020;127(4):407-14. https://doi.org/10.1007/s00702-020-02182-2
  5. Tsumura M, Sobhan U, Muramatsu T, Sato M, Ichikawa H, Sahara Y, et al. TRPV1-mediated calcium signal couples with cannabinoid receptors and sodium-calcium exchangers in rat odontoblasts. Cell Calcium 2012;52(2):124-36. https://doi.org/10.1016/j.ceca.2012.05.002
  6. Lee KH, Lee BM, Park CK, Kim YH, Chung G. Ion channels involved in tooth pain. Int J Mol Sci 2019;20(9):2266. https://doi.org/10.3390/ijms20092266
  7. Cha M, Sallem I, Jang HW, Jung IY. Role of transient receptor potential vanilloid type 1 in the trigeminal ganglion and brain stem following Dental pulp inflammation. Int Endod J 2020;53(1):62-71. https://doi.org/10.1111/iej.13204
  8. Afroz S, Arakaki R, Iwasa T, Oshima M, Hosoki M, Inoue M, et al. CGRP induces differential regulation of cytokines from satellite glial cells in trigeminal ganglia and orofacial nociception. Int J Mol Sci 2019;20(3):711. https://doi.org/10.3390/ijms20030711
  9. Meents JE, Bressan E, Sontag S, Foerster A, Hautvast P, Rosseler C, et al. The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients. Pain 2019;160(6):1327-41. https://doi.org/10.1097/j.pain.0000000000001511
  10. Alvarez P, Levine JD. Antihyperalgesic effect of tetrodotoxin in rat models of persistent muscle pain. Neurosci 2015;311:499-507. https://doi.org/10.1016/j.neuroscience.2015.10.059
  11. Kwon MJ, Jung IY, Cha MH, Lee BH. Inhibition of the Nav1.7 channel in the trigeminal ganglion relieves pulpitis inflammatory pain. Front Pharmacol 2021;12:759730. https://doi.org/10.3389/fphar.2021.759730
  12. Sun S, Sun J, Jiang W, Wang W, Ni L. Nav1.7 via promotion of ERK in the trigeminal ganglion plays an important role in the induction of pulpitis inflammatory pain. Biomed Res Int 2019;1:1-11. https://doi.org/10.1155/2019/6973932
  13. Hameed S. Nav1.7 and Nav1.8: role in the pathophysiology of pain. Mol Pain 2019;15. https://doi.org/10.1177/1744806919858801
  14. Siqueira SRDT, Alves B, Malpartida H, Teixeira MJ, Siqueira JTT. Abnormal expression of voltage-gated sodium channels Nav1.7, Nav1.3 and Nav1.8 in trigeminal neuralgia. Neurosci 2009;164(2):573-7. https://doi.org/10.1016/j.neuroscience.2009.08.037
  15. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. Sodium channels in normal and pathological pain. Annu Review Neurosci 2010;33:325-47. https://doi.org/10.1146/annurev-neuro-060909-153234
  16. Nassar MA, Levato A, Stirling LC, Wood JN. Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol Pain 2005;22(1)24. https://doi.org/10.1186/1744-8069-1-24
  17. Klugbauer N, Lacinova L, Flockerzi V, Hofmann F. Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 1995;14(6):1084-90. https://doi.org/10.1002/j.1460-2075.1995.tb07091.x
  18. Emery EC, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 2016;20(8):975-83.https://doi.org/10.1517/14728222.2016.1162295
  19. Toledo-Aral JJ, Moss BL, He ZJ, Koszowski AG, Whisenand T, Levinson SR, et al. Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Pro Natl Acad Sci 1997;94(4):1527-32. https://doi.org/10.1073/pnas.94.4.1527
  20. Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2007;579(1):1-14. https://doi.org/10.1113/jphysiol.2006.121483
  21. Takeda M, Takahashi M, Matsumoto S. Suppression of neurokinin-1 receptor in trigeminal ganglia attenuates central sensitization following inflammation. J Peripher Nerv Syst 2012;17(2):169-81. https://doi.org/10.1111/j.1529-8027.2012.00404.x
  22. Iwata K, Takeda M, Oh SB, Shinoda M. Neurophysiology of orofacial pain. Contemporary Oral Medicine, Springer International Publishing 2017;1-23. https://doi.org/10.1007/978-3-319-28100-1_8-2
  23. Liu M, He F, Shao M, Li T, Wang L, Wang Y, Xu W. PACAP inhibition alleviates neuropathic pain by modulating Nav1.7 through the MAPK/ERK signaling pathway in a rat model of chronic constriction injury. Neuropeptides 2023;99(1):102327. https://doi.org/10.1016/j.npep.2023.102327
  24. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 2018;129(2):343-66. https://doi.org/10.1097/ALN.0000000000002130
  25. Kato J, Wakisaka S, Kurisu K. Immunohistochemical changes in the distribution of nerve fibers in the periodontal ligament during an Experimental tooth movement of the ratmolar. Acta Anat 1996;157(1):53-62. https://doi.org/10.1159/000147866
  26. Reis CLB, Pingueiro-Okada EM, Luiz KG, Pedroso GL, Matsumoto MAN, de Menezes LM, et al. Orthodontic pain: c-Fos expression in rat brain nuclei after rapid maxillary expansion. J World Fed Orthod 2023;12(1):3-8. https://doi.org/10.1016/j.ejwf.2022.09.003